Central limit theorems for moving average processes*

被引:0
作者
Yu Miao
Li Ge
Shoufang Xu
机构
[1] Henan Normal University,College of Mathematics and Information Science
[2] Henan Institute of Science and Technology,Department of Mathematics
[3] Xinxiang University,Department of Mathematics and Information Science
来源
Lithuanian Mathematical Journal | 2013年 / 53卷
关键词
central limit theorem; moving average processes; associated sequence; martingale difference; 60F05;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {{\left( {{\xi_n}} \right)}_{{n\in \mathbb{Z}}}} $$\end{document} be a stationary sequence of real random variables with Eξ0 = 0 and infinite variance. Furthermore, assume that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {{\left( {{c_n}} \right)}_{{n\in \mathbb{Z}}}} $$\end{document} is a sequence of real numbers and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {X_n}=\sum {_{{j\in \mathbb{Z}}}{c_j}{\xi_{n-j }}} $$\end{document} is a moving average processes driven by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {{\left( {{\xi_n}} \right)}_{{n\in \mathbb{Z}}}} $$\end{document}. By using a decomposition of the moving average processes, a central limit theorem for the partial sums \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sum\nolimits_{k=1}^n {{X_k}} $$\end{document} is established. As applications, we obtain some central limit theorems for stationary dependent sequences \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {{\left( {{\xi_n}} \right)}_{{n\in \mathbb{Z}}}} $$\end{document}, such as associated sequence, martingale difference, and so on.
引用
收藏
页码:80 / 90
页数:10
相关论文
共 50 条
[31]   Stationary Reversible Processes of a Moving Average and Autorepression with Residuals as a Moving Average [J].
Tovstik, T. M. .
VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2023, 56 (03) :373-384
[32]   Limit Theorems for a Correlated Moving Window Model [J].
Deepak Singh ;
Somesh Kumar .
Bulletin of the Iranian Mathematical Society, 2022, 48 :2883-2898
[33]   Limit Theorems for a Correlated Moving Window Model [J].
Singh, Deepak ;
Kumar, Somesh .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (05) :2883-2898
[34]   LIMIT-THEOREMS FOR CUMULATIVE PROCESSES [J].
GLYNN, PW ;
WHITT, W .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1993, 47 (02) :299-314
[35]   Limit theorems for locally stationary processes [J].
Rafael Kawka .
Statistical Papers, 2021, 62 :2557-2571
[36]   Limit theorems for locally stationary processes [J].
Kawka, Rafael .
STATISTICAL PAPERS, 2021, 62 (06) :2557-2571
[37]   LIMIT THEOREMS FOR GENERALIZED RENEWAL PROCESSES [J].
Bulinskaya, E. V. ;
Sokolova, A. I. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2018, 62 (01) :35-54
[38]   Central limit theorems for supercritical superprocesses [J].
Ren, Yan-Xia ;
Song, Renming ;
Zhang, Rui .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (02) :428-457
[39]   CENTRAL LIMIT THEOREMS IN THE CONFIGURATION MODEL [J].
Barbour, A. D. ;
Rollin, Adrian .
ANNALS OF APPLIED PROBABILITY, 2019, 29 (02) :1046-1069
[40]   Central limit theorems in linear dynamics [J].
Bayart, Frederic .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (03) :1131-1158