Central limit theorems for moving average processes*

被引:0
作者
Yu Miao
Li Ge
Shoufang Xu
机构
[1] Henan Normal University,College of Mathematics and Information Science
[2] Henan Institute of Science and Technology,Department of Mathematics
[3] Xinxiang University,Department of Mathematics and Information Science
来源
Lithuanian Mathematical Journal | 2013年 / 53卷
关键词
central limit theorem; moving average processes; associated sequence; martingale difference; 60F05;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {{\left( {{\xi_n}} \right)}_{{n\in \mathbb{Z}}}} $$\end{document} be a stationary sequence of real random variables with Eξ0 = 0 and infinite variance. Furthermore, assume that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {{\left( {{c_n}} \right)}_{{n\in \mathbb{Z}}}} $$\end{document} is a sequence of real numbers and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {X_n}=\sum {_{{j\in \mathbb{Z}}}{c_j}{\xi_{n-j }}} $$\end{document} is a moving average processes driven by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {{\left( {{\xi_n}} \right)}_{{n\in \mathbb{Z}}}} $$\end{document}. By using a decomposition of the moving average processes, a central limit theorem for the partial sums \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sum\nolimits_{k=1}^n {{X_k}} $$\end{document} is established. As applications, we obtain some central limit theorems for stationary dependent sequences \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {{\left( {{\xi_n}} \right)}_{{n\in \mathbb{Z}}}} $$\end{document}, such as associated sequence, martingale difference, and so on.
引用
收藏
页码:80 / 90
页数:10
相关论文
共 50 条
[21]   Central limit theorems for long range dependent spatial linear processes [J].
Lahiri, S. N. ;
Robinson, Peter M. .
BERNOULLI, 2016, 22 (01) :345-375
[22]   On functional central limit theorems for semi-Markov and related processes [J].
Glynn, PW ;
Haas, PJ .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (03) :487-506
[23]   Limit theorems for functionals of moving averages [J].
Ho, HC ;
Hsing, T .
ANNALS OF PROBABILITY, 1997, 25 (04) :1636-1669
[24]   Central Limit Theorems revisited [J].
Kundu, S ;
Majumdar, S ;
Mukherjee, K .
STATISTICS & PROBABILITY LETTERS, 2000, 47 (03) :265-275
[25]   Central limit theorems for nearly long range dependent subordinated linear processes [J].
Wendler, Martin ;
Wu, Wei Biao .
JOURNAL OF APPLIED PROBABILITY, 2020, 57 (02) :637-656
[26]   Central Limit Theorems of Local Polynomial Threshold Estimator for Diffusion Processes with Jumps [J].
Song, Yuping ;
Wang, Hanchao .
SCANDINAVIAN JOURNAL OF STATISTICS, 2018, 45 (03) :644-681
[27]   Stable Central Limit Theorems for Super Ornstein-Uhlenbeck Processes, II [J].
Ren, Yan Xia ;
Song, Ren Ming ;
Sun, Zhen Yao ;
Zhao, Jian Jie .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (03) :487-498
[28]   Central limit theorems for random processes with sample paths in exponential Orlicz spaces [J].
Su, ZG .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 66 (01) :1-20
[29]   Stable Central Limit Theorems for Super Ornstein-Uhlenbeck Processes, II [J].
Yan Xia Ren ;
Ren Ming Song ;
Zhen Yao Sun ;
Jian Jie Zhao .
Acta Mathematica Sinica, English Series, 2022, 38 :487-498
[30]   Stationary Reversible Processes of a Moving Average and Autorepression with Residuals as a Moving Average [J].
T. M. Tovstik .
Vestnik St. Petersburg University, Mathematics, 2023, 56 :373-384