Central limit theorems for moving average processes*

被引:0
|
作者
Yu Miao
Li Ge
Shoufang Xu
机构
[1] Henan Normal University,College of Mathematics and Information Science
[2] Henan Institute of Science and Technology,Department of Mathematics
[3] Xinxiang University,Department of Mathematics and Information Science
来源
Lithuanian Mathematical Journal | 2013年 / 53卷
关键词
central limit theorem; moving average processes; associated sequence; martingale difference; 60F05;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {{\left( {{\xi_n}} \right)}_{{n\in \mathbb{Z}}}} $$\end{document} be a stationary sequence of real random variables with Eξ0 = 0 and infinite variance. Furthermore, assume that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {{\left( {{c_n}} \right)}_{{n\in \mathbb{Z}}}} $$\end{document} is a sequence of real numbers and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {X_n}=\sum {_{{j\in \mathbb{Z}}}{c_j}{\xi_{n-j }}} $$\end{document} is a moving average processes driven by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {{\left( {{\xi_n}} \right)}_{{n\in \mathbb{Z}}}} $$\end{document}. By using a decomposition of the moving average processes, a central limit theorem for the partial sums \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sum\nolimits_{k=1}^n {{X_k}} $$\end{document} is established. As applications, we obtain some central limit theorems for stationary dependent sequences \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {{\left( {{\xi_n}} \right)}_{{n\in \mathbb{Z}}}} $$\end{document}, such as associated sequence, martingale difference, and so on.
引用
收藏
页码:80 / 90
页数:10
相关论文
共 50 条
  • [1] Central limit theorems for moving average processes*
    Miao, Yu
    Ge, Li
    Xu, Shoufang
    LITHUANIAN MATHEMATICAL JOURNAL, 2013, 53 (01) : 80 - 90
  • [2] Limit theorems for additive statistics based on moving average samples
    Borisov I.S.
    Sidorov D.I.
    Siberian Advances in Mathematics, 2011, 21 (4) : 233 - 249
  • [3] Central limit theorems for supercritical branching Markov processes
    Ren, Yan-Xia
    Song, Renming
    Zhang, Rui
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (03) : 1716 - 1756
  • [4] Central limit theorems for linear, nonlinear and mixing processes
    Chanda, KC
    COMMUNICATIONS IN DIFFERENCE EQUATIONS, 2000, : 79 - 90
  • [5] LIMIT THEOREMS FOR MOVING AVERAGES OF DISCRETIZED PROCESSES PLUS NOISE
    Jacod, Jean
    Podolskij, Mark
    Vetter, Mathias
    ANNALS OF STATISTICS, 2010, 38 (03) : 1478 - 1545
  • [6] Central limit theorems for functionals of linear processes and their applications
    Wu, WB
    STATISTICA SINICA, 2002, 12 (02) : 635 - 649
  • [7] Central Limit Theorems for Super Ornstein-Uhlenbeck Processes
    Ren, Yan-Xia
    Song, Renming
    Zhang, Rui
    ACTA APPLICANDAE MATHEMATICAE, 2014, 130 (01) : 9 - 49
  • [8] New Central Limit Theorems for Functionals of Gaussian Processes and their Applications
    Manuel Corcuera, Jose
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2012, 14 (03) : 477 - 500
  • [9] New Central Limit Theorems for Functionals of Gaussian Processes and their Applications
    José Manuel Corcuera
    Methodology and Computing in Applied Probability, 2012, 14 : 477 - 500
  • [10] CENTRAL LIMIT THEOREMS FOR SUPERCRITICAL BRANCHING NONSYMMETRIC MARKOV PROCESSES
    Ren, Yan-Xia
    Song, Renming
    Zhang, Rui
    ANNALS OF PROBABILITY, 2017, 45 (01) : 564 - 623