2-Reconstructibility of Strongly Regular Graphs and 2-Partially Distance-Regular Graphs

被引:0
作者
Douglas B. West
Xuding Zhu
机构
[1] Zhejiang Normal University,
[2] University of Illinois at Urbana–Champaign,undefined
来源
Graphs and Combinatorics | 2023年 / 39卷
关键词
Reconstruction Conjecture; 2-reconstructibility; Strongly regular graph; Distance-regular graph; 2-partially distance-regular;
D O I
暂无
中图分类号
学科分类号
摘要
A graph is ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-reconstructible if it is determined by its multiset of induced subgraphs obtained by deleting ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} vertices. For graphs with at least six vertices, we prove that all graphs in a family containing all strongly regular graphs and most 2-partially distance-regular graphs are 2-reconstructible.
引用
收藏
相关论文
共 50 条
  • [31] On the connectedness of the complement of a ball in distance-regular graphs
    Sebastian M. Cioabă
    Jack H. Koolen
    Journal of Algebraic Combinatorics, 2013, 38 : 191 - 195
  • [32] Inverse Problems in the Theory of Distance-Regular Graphs
    A. A. Makhnev
    D. V. Paduchikh
    Proceedings of the Steklov Institute of Mathematics, 2019, 307 : 88 - 98
  • [33] On some distance-regular graphs with many vertices
    Crnkovic, Dean
    Rukavina, Sanja
    Svob, Andrea
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2020, 51 (04) : 641 - 652
  • [34] Inverse Problems in the Theory of Distance-Regular Graphs
    Makhnev, A. A.
    Paduchikh, D. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 307 (SUPPL 1) : 88 - 98
  • [35] On some distance-regular graphs with many vertices
    Dean Crnković
    Sanja Rukavina
    Andrea Švob
    Journal of Algebraic Combinatorics, 2020, 51 : 641 - 652
  • [36] Nonexistence of a Class of Distance-regular Graphs
    Huang, Yu-pei
    Pan, Yeh-jong
    Weng, Chih-wen
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (02)
  • [37] Codes in Shilla Distance-Regular Graphs
    Belousov, I. N.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 305 (Suppl 1) : S4 - S9
  • [38] Codes in Shilla distance-regular graphs
    Belousov, Ivan NIkolaevich
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2018, 24 (02): : 34 - 39
  • [39] On perturbations of almost distance-regular graphs
    Dalfo, C.
    van Dam, E. R.
    Fiol, M. A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2626 - 2638
  • [40] ON ISOMORPHISM BETWEEN DISTANCE-REGULAR GRAPHS
    Goryainov, S. V.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2014, 11 : 311 - 320