Itô maps and analysis on path spaces

被引:0
作者
K. D. Elworthy
Xue-Mei Li
机构
[1] University of Warwick,Mathematics Institute
[2] Loughborough University,Mathematical Sciences
来源
Mathematische Zeitschrift | 2007年 / 257卷
关键词
Path space; Malliavin calculus; Markov uniqueness; Sobolev spaces; Weak derivatives; Markovian connection; Itô map; Banach manifold; Divergence operator;
D O I
暂无
中图分类号
学科分类号
摘要
We consider versions of Malliavin calculus on path spaces of compact manifolds with diffusion measures, defining Gross–Sobolev spaces of differentiable functions and proving their intertwining with solution maps, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{I}}$$\end{document} , of certain stochastic differential equations. This is shown to shed light on fundamental uniqueness questions for this calculus including uniqueness of the closed derivative operator d and Markov uniqueness of the associated Dirichlet form. A continuity result for the divergence operator by Kree and Kree is extended to this situation. The regularity of conditional expectations of smooth functionals of classical Wiener space, given \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{I}}$$\end{document} , is considered and shown to have strong implications for these questions. A major role is played by the (possibly sub-Riemannian) connections induced by stochastic differential equations: Damped Markovian connections are used for the covariant derivatives.
引用
收藏
页码:643 / 706
页数:63
相关论文
共 50 条
[31]   Locally biHölder continuous maps and their induced embeddings between Besov spaces [J].
Huang, Manzi ;
Wang, Xiantao ;
Wang, Zhuang ;
Xu, Zhihao .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2023, 30 (04) :468-481
[32]   Realizability of the H-k-Distance Functions by Homology Classes of Path Spaces [J].
Ershov, Yu. V. ;
Yakovlev, E. I. .
RUSSIAN MATHEMATICS, 2010, 54 (05) :15-20
[33]   Stochastic Jacobi fields and vector fields induced by varying area on path spaces [J].
Lyons, T ;
Qian, ZM .
PROBABILITY THEORY AND RELATED FIELDS, 1997, 109 (04) :539-570
[34]   Transportation-cost inequalities on path spaces over manifolds carrying geometric flows [J].
Cheng, Li-Juan .
BULLETIN DES SCIENCES MATHEMATIQUES, 2016, 140 (05) :541-561
[35]   Stochastic analysis, rough path analysis and fractional Brownian motions [J].
Coutin, L ;
Qian, ZM .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (01) :108-140
[36]   Functional Analysis. - Sobolev spaces revisited [J].
Brezis, Halm ;
Seeger, Andreas ;
Van Schaftingen, Jean ;
Yung, Po-Lam .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2022, 33 (02) :413-437
[37]   Flows Associated to Cameron-martin Type Vector Fields on Path Spaces Over a Riemannian Manifold [J].
Jing-xiao ZHANG .
Acta Mathematicae Applicatae Sinica, 2013, (03) :499-508
[38]   Flows associated to Cameron-Martin type vector fields on path spaces over a Riemannian manifold [J].
Jing-xiao Zhang .
Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 :499-508
[39]   Flows Associated to Cameron-martin Type Vector Fields on Path Spaces Over a Riemannian Manifold [J].
Zhang, Jing-xiao .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (03) :499-508
[40]   Phases of unimodular complex valued maps: optimal estimates, the factorization method, and the sum-intersection property of Sobolev spaces [J].
Mironescu, Petru ;
Molnar, Ioana .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (05) :965-1013