Itô maps and analysis on path spaces

被引:0
作者
K. D. Elworthy
Xue-Mei Li
机构
[1] University of Warwick,Mathematics Institute
[2] Loughborough University,Mathematical Sciences
来源
Mathematische Zeitschrift | 2007年 / 257卷
关键词
Path space; Malliavin calculus; Markov uniqueness; Sobolev spaces; Weak derivatives; Markovian connection; Itô map; Banach manifold; Divergence operator;
D O I
暂无
中图分类号
学科分类号
摘要
We consider versions of Malliavin calculus on path spaces of compact manifolds with diffusion measures, defining Gross–Sobolev spaces of differentiable functions and proving their intertwining with solution maps, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{I}}$$\end{document} , of certain stochastic differential equations. This is shown to shed light on fundamental uniqueness questions for this calculus including uniqueness of the closed derivative operator d and Markov uniqueness of the associated Dirichlet form. A continuity result for the divergence operator by Kree and Kree is extended to this situation. The regularity of conditional expectations of smooth functionals of classical Wiener space, given \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{I}}$$\end{document} , is considered and shown to have strong implications for these questions. A major role is played by the (possibly sub-Riemannian) connections induced by stochastic differential equations: Damped Markovian connections are used for the covariant derivatives.
引用
收藏
页码:643 / 706
页数:63
相关论文
共 50 条
[21]   A cubical model for path spaces in d-simplicial complexes [J].
Ziemianski, Krzysztof .
TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (08) :2127-2145
[22]   Spectral gap on path spaces with infinite time-interval [J].
王凤雨 .
Science China Mathematics, 1999, (06) :600-604
[24]   The homology of path spaces and Floer homology with conormal boundary conditions [J].
Alberto Abbondandolo ;
Alessandro Portaluri ;
Matthias Schwarz .
Journal of Fixed Point Theory and Applications, 2008, 4 :263-293
[25]   Spectral gap on path spaces with infinite time-interval [J].
Wang Fengyu .
Science in China Series A: Mathematics, 1999, 42 (6) :600-604
[26]   Sobolev Embedding Theorems and Their Generalizations for Maps Defined on Topological Spaces with Measures [J].
Romanovski, N. N. .
MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2022, 77 (01) :27-40
[27]   Sobolev Embedding Theorems and Their Generalizations for Maps Defined on Topological Spaces with Measures [J].
N. N. Romanovski .
Moscow University Mathematics Bulletin, 2022, 77 :27-40
[28]   COH formula and Dirichlet Laplacians on small domains of pinned path spaces [J].
Aida, Shigeki .
CONCENTRATION, FUNCTIONAL INEQUALITIES AND ISOPERIMETRY, 2011, 545 :1-12
[29]   Quasi-invariance of the Wiener measure on path spaces: Noncompact case [J].
Hsu, EP .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 193 (02) :278-290
[30]   MARTINGALE REPRESENTATION AND A SIMPLE PROOF OF LOGARITHMIC SOBOLEV INEQUALITIES ON PATH SPACES [J].
Capitaine, Mireille ;
Hsu, Elton P. ;
Ledoux, Michel .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 1997, 2 :71-81