Itô maps and analysis on path spaces

被引:0
|
作者
K. D. Elworthy
Xue-Mei Li
机构
[1] University of Warwick,Mathematics Institute
[2] Loughborough University,Mathematical Sciences
来源
Mathematische Zeitschrift | 2007年 / 257卷
关键词
Path space; Malliavin calculus; Markov uniqueness; Sobolev spaces; Weak derivatives; Markovian connection; Itô map; Banach manifold; Divergence operator;
D O I
暂无
中图分类号
学科分类号
摘要
We consider versions of Malliavin calculus on path spaces of compact manifolds with diffusion measures, defining Gross–Sobolev spaces of differentiable functions and proving their intertwining with solution maps, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{I}}$$\end{document} , of certain stochastic differential equations. This is shown to shed light on fundamental uniqueness questions for this calculus including uniqueness of the closed derivative operator d and Markov uniqueness of the associated Dirichlet form. A continuity result for the divergence operator by Kree and Kree is extended to this situation. The regularity of conditional expectations of smooth functionals of classical Wiener space, given \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{I}}$$\end{document} , is considered and shown to have strong implications for these questions. A major role is played by the (possibly sub-Riemannian) connections induced by stochastic differential equations: Damped Markovian connections are used for the covariant derivatives.
引用
收藏
页码:643 / 706
页数:63
相关论文
共 50 条