Spatiotemporal Exposure Prediction with Penalized Regression

被引:0
|
作者
Nathan A. Ryder
Joshua P. Keller
机构
[1] Colorado State University,Department of Statistics
来源
Journal of Agricultural, Biological and Environmental Statistics | 2023年 / 28卷
关键词
Particulate matter; Sulfate; Silicon; Air pollution; Universal kriging; Shrinkage estimation;
D O I
暂无
中图分类号
学科分类号
摘要
Exposure to ambient air pollution is a global health burden, and assessing its relationships to health effects requires predicting concentrations of ambient pollution over time and space. We propose a spatiotemporal penalized regression model that provides high predictive accuracy and greater computation speed than competing approaches. This model uses overfitting and time-smoothing penalties to provide accurate predictions when there are large amounts of temporal missingness in the data. When compared to spatial-only and spatiotemporal universal kriging models in simulations, our model performs similarly under most conditions and can outperform the others when temporal missingness in the data is high. As the number of spatial locations in a data set increases, the computation time of our penalized regression model is more scalable than either of the compared methods. We demonstrate our model using total particulate matter mass (PM2.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{2.5}$$\end{document} and PM10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{{10}}$$\end{document}) and using sulfate and silicon component concentrations. For total mass, our model has lower cross-validated RMSE than the spatial-only universal kriging method, but not the spatiotemporal version. For the component concentrations, which are less frequently observed, our model outperforms both of the other approaches, showing 15% and 13% improvements over the spatiotemporal universal kriging method for sulfate and silicon. The computational speed of our model also allows for the use of nonparametric bootstrap for measurement error correction, a valuable tool in two-stage health effects models. Supplementary materials accompanying this paper appear online.
引用
收藏
页码:260 / 278
页数:18
相关论文
共 50 条
  • [41] Benefits of High Resolution PM2.5 Prediction using Satellite MAIAC AOD and Land Use Regression for Exposure Assessment: California Examples
    Lee, Hyung Joo
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (21) : 12774 - 12783
  • [42] Spatiotemporal Deep Learning Model for Citywide Air Pollution Interpolation and Prediction
    Le, Van-Duc
    Bui, Tien-Cuong
    Cha, Sang-Kyun
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 55 - 62
  • [43] Prediction and analysis of residential house price using a flexible spatiotemporal model
    Wang, Lu
    Wang, Guangxing
    Yu, Huan
    Wang, Fei
    JOURNAL OF APPLIED ECONOMICS, 2022, 25 (01) : 503 - 522
  • [44] Spatiotemporal prediction of particulate matter concentration based on traffic and meteorological data
    Yang, Jiayu
    Shi, Linchang
    Lee, Jaeyoung
    Ryu, Ingon
    TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT, 2024, 127
  • [45] Ambient PM2.5 and clinically recognized early pregnancy loss: A case-control study with spatiotemporal exposure predictions
    Zhang, Yujuan
    Wang, Jianmei
    Chen, Li
    Yang, Hua
    Zhang, Bumei
    Wang, Qina
    Hu, Liyuan
    Zhang, Nan
    Vedal, Sverre
    Xue, Fengxia
    Bai, Zhipeng
    ENVIRONMENT INTERNATIONAL, 2019, 126 : 422 - 429
  • [46] Satellite-Based Estimates of Daily NO2 Exposure in China Using Hybrid Random Forest and Spatiotemporal Kriging Model
    Zhan, Yu
    Luo, Yuzhou
    Deng, Xunfei
    Zhang, Kaishan
    Zhang, Minghua
    Grieneisen, Michael L.
    Di, Baofeng
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2018, 52 (07) : 4180 - 4189
  • [47] Re: Does Exposure Prediction Bias Health-effect Estimation? The Relationship Between Confounding Adjustment and Exposure Prediction
    Goldberg, Mark S.
    Villeneuve, Paul
    Crouse, Daniel
    EPIDEMIOLOGY, 2017, 28 (01) : E2 - E3
  • [48] Spatiotemporal distributions of ambient oxides of nitrogen, with implications for exposure inequality and urban design
    Yu, Haofei
    Stuart, Amy L.
    JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2013, 63 (08) : 943 - 955
  • [49] Spatiotemporal Distribution Patterns and Exposure Risks of PM2.5 Pollution in China
    Song, Jun
    Li, Chunlin
    Liu, Miao
    Hu, Yuanman
    Wu, Wen
    REMOTE SENSING, 2022, 14 (13)
  • [50] Comparing land use regression and dispersion modelling to assess residential exposure to ambient air pollution for epidemiological studies
    de Hoogh, Kees
    Korek, Michal
    Vienneau, Danielle
    Keuken, Menno
    Kukkonen, Jaakko
    Nieuwenhuijsen, Mark J.
    Badaloni, Chiara
    Beelen, Rob
    Bolignano, Andrea
    Cesaroni, Giulia
    Pradas, Marta Cirach
    Cyrys, Josef
    Douros, John
    Eeftens, Marloes
    Forastiere, Francesco
    Forsberg, Bertil
    Fuks, Kateryna
    Gehring, Ulrike
    Gryparis, Alexandros
    Gulliver, John
    Hansell, Anna L.
    Hoffmann, Barbara
    Johansson, Christer
    Jonkers, Sander
    Kangas, Leena
    Katsouyanni, Klea
    Kuenzli, Nino
    Lanki, Timo
    Memmesheimer, Michael
    Moussiopoulos, Nicolas
    Modig, Lars
    Pershagen, Goran
    Probst-Hensch, Nicole
    Schindler, Christian
    Schikowski, Tamara
    Sugiri, Dorothee
    Teixido, Oriol
    Tsai, Ming-Yi
    Yli-Tuomi, Tarja
    Brunekreef, Bert
    Hoek, Gerard
    Bellander, Tom
    ENVIRONMENT INTERNATIONAL, 2014, 73 : 382 - 392