Spatiotemporal Exposure Prediction with Penalized Regression

被引:0
|
作者
Nathan A. Ryder
Joshua P. Keller
机构
[1] Colorado State University,Department of Statistics
来源
Journal of Agricultural, Biological and Environmental Statistics | 2023年 / 28卷
关键词
Particulate matter; Sulfate; Silicon; Air pollution; Universal kriging; Shrinkage estimation;
D O I
暂无
中图分类号
学科分类号
摘要
Exposure to ambient air pollution is a global health burden, and assessing its relationships to health effects requires predicting concentrations of ambient pollution over time and space. We propose a spatiotemporal penalized regression model that provides high predictive accuracy and greater computation speed than competing approaches. This model uses overfitting and time-smoothing penalties to provide accurate predictions when there are large amounts of temporal missingness in the data. When compared to spatial-only and spatiotemporal universal kriging models in simulations, our model performs similarly under most conditions and can outperform the others when temporal missingness in the data is high. As the number of spatial locations in a data set increases, the computation time of our penalized regression model is more scalable than either of the compared methods. We demonstrate our model using total particulate matter mass (PM2.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{2.5}$$\end{document} and PM10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{{10}}$$\end{document}) and using sulfate and silicon component concentrations. For total mass, our model has lower cross-validated RMSE than the spatial-only universal kriging method, but not the spatiotemporal version. For the component concentrations, which are less frequently observed, our model outperforms both of the other approaches, showing 15% and 13% improvements over the spatiotemporal universal kriging method for sulfate and silicon. The computational speed of our model also allows for the use of nonparametric bootstrap for measurement error correction, a valuable tool in two-stage health effects models. Supplementary materials accompanying this paper appear online.
引用
收藏
页码:260 / 278
页数:18
相关论文
共 50 条
  • [31] Estimating 2013-2019 NO2 exposure with high spatiotemporal resolution in China using an ensemble model
    Huang, Conghong
    Sun, Kang
    Hu, Jianlin
    Xue, Tao
    Xu, Hao
    Wang, Meng
    ENVIRONMENTAL POLLUTION, 2022, 292
  • [32] Application of alternative spatiotemporal metrics of ambient air pollution exposure in a time-series epidemiological study in Atlanta
    Sarnat, Stefanie Ebelt
    Sarnat, Jeremy A.
    Mulholland, James
    Isakov, Vlad
    Oezkaynak, Halul
    Chang, Howard H.
    Klein, Mitchel
    Tolbert, Paige E.
    JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY, 2013, 23 (06) : 593 - 605
  • [33] Integrating traffic pollution dispersion into spatiotemporal NO2 prediction
    Wu, Yunhan
    Bi, Jianzhao
    Gassett, Amanda J.
    Young, Michael T.
    Szpiro, Adam A.
    Kaufman, Joel D.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 925
  • [34] Autistic Regression and Exposure to Industrial Chemicals: Preliminary Observations
    Goez, Helly
    Nielsen, Charlene C.
    Bryan, Sean
    Clark, Brenda
    Zwaigenbaum, Lonnie
    Yamamoto, Shelby S.
    Hayden, Niklas Joseph Terrence
    Osornio-Vargas, Alvaro R.
    CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES, 2024, 51 (02) : 289 - 292
  • [35] Spatiotemporal analysis of traffic congestion, air pollution, and exposure vulnerability in Tanzania
    Dasgupta, Susmita
    Lall, Somik
    Wheeler, David
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 778
  • [36] Spatiotemporal variability in exposure to excessive heat at the sub-urban scale
    Shafran-Nathan, Rakefet
    Broday, David M.
    CLIMATIC CHANGE, 2022, 174 (1-2)
  • [37] Does Exposure Prediction Bias Health-Effect Estimation? The Relationship Between Confounding Adjustment and Exposure Prediction
    Cefalu, Matthew
    Dominici, Francesca
    EPIDEMIOLOGY, 2014, 25 (04) : 583 - 590
  • [38] Integrating travel behavior with land use regression to estimate dynamic air pollution exposure in Hong Kong
    Tang, Robert
    Tian, Linwei
    Thuan-Quoc Thach
    Tsui, Tsz Him
    Brauer, Michael
    Lee, Martha
    Allen, Ryan
    Yuchi, Weiran
    Lai, Poh-Chin
    Wong, Paulina
    Barratt, Benjamin
    ENVIRONMENT INTERNATIONAL, 2018, 113 : 100 - 108
  • [39] Integrating Address Geocoding, Land Use Regression, and Spatiotemporal Geostatistical Estimation for Groundwater Tetrachloroethylene
    Messier, Kyle P.
    Akita, Yasuyuki
    Serre, Marc L.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (05) : 2772 - 2780
  • [40] Urban Air Quality Prediction Using Regression Analysis
    Mahanta, Soubhik
    Ramakrishnudu, T.
    Jha, Rajat Raj
    Tailor, Niraj
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 1118 - 1123