Spatiotemporal Exposure Prediction with Penalized Regression

被引:0
|
作者
Nathan A. Ryder
Joshua P. Keller
机构
[1] Colorado State University,Department of Statistics
来源
Journal of Agricultural, Biological and Environmental Statistics | 2023年 / 28卷
关键词
Particulate matter; Sulfate; Silicon; Air pollution; Universal kriging; Shrinkage estimation;
D O I
暂无
中图分类号
学科分类号
摘要
Exposure to ambient air pollution is a global health burden, and assessing its relationships to health effects requires predicting concentrations of ambient pollution over time and space. We propose a spatiotemporal penalized regression model that provides high predictive accuracy and greater computation speed than competing approaches. This model uses overfitting and time-smoothing penalties to provide accurate predictions when there are large amounts of temporal missingness in the data. When compared to spatial-only and spatiotemporal universal kriging models in simulations, our model performs similarly under most conditions and can outperform the others when temporal missingness in the data is high. As the number of spatial locations in a data set increases, the computation time of our penalized regression model is more scalable than either of the compared methods. We demonstrate our model using total particulate matter mass (PM2.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{2.5}$$\end{document} and PM10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {PM}_{{10}}$$\end{document}) and using sulfate and silicon component concentrations. For total mass, our model has lower cross-validated RMSE than the spatial-only universal kriging method, but not the spatiotemporal version. For the component concentrations, which are less frequently observed, our model outperforms both of the other approaches, showing 15% and 13% improvements over the spatiotemporal universal kriging method for sulfate and silicon. The computational speed of our model also allows for the use of nonparametric bootstrap for measurement error correction, a valuable tool in two-stage health effects models. Supplementary materials accompanying this paper appear online.
引用
收藏
页码:260 / 278
页数:18
相关论文
共 50 条
  • [21] Bayesian shrinkage prediction for the regression problem
    Kobayashi, Kei
    Komaki, Fumiyasu
    JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (09) : 1888 - 1905
  • [22] Application of Functional Principal Component Analysis in the Spatiotemporal Land-Use Regression Modeling of PM2.5
    Taghavi, Mahmood
    Ghanizadeh, Ghader
    Ghasemi, Mohammad
    Fasso, Alessandro
    Hoek, Gerard
    Hushmandi, Kiavash
    Raei, Mehdi
    ATMOSPHERE, 2023, 14 (06)
  • [23] Regional Spatiotemporal Collaborative Prediction Model for Air Quality
    Zhao, Guyu
    Huang, Guoyan
    He, Hongdou
    He, Haitao
    Ren, Jiadong
    IEEE ACCESS, 2019, 7 : 134903 - 134919
  • [24] Spatiotemporal Evolution and Prediction of AOT in Coal Resource Cities: A Case Study of Shanxi Province, China
    Tang, Yan
    Xu, Rui
    Xie, Mengfan
    Wang, Yusu
    Li, Jian
    Zhou, Yi
    SUSTAINABILITY, 2022, 14 (05)
  • [25] Spatiotemporal exposure of motorcyclists to particulate matter in a densely populated urban area: A case study of Varanasi, India
    Behera, Saroj Kanta
    Mudgal, Abhisek
    Singh, Ankit Kumar
    ATMOSPHERIC POLLUTION RESEARCH, 2023, 14 (08)
  • [26] A novel hybrid spatiotemporal land use regression model system at the megacity scale
    Wang, Jiawei
    Xu, He
    ATMOSPHERIC ENVIRONMENT, 2021, 244 (244)
  • [27] Application of alternative spatiotemporal metrics of ambient air pollution exposure in a time-series epidemiological study in Atlanta
    Stefanie Ebelt Sarnat
    Jeremy A Sarnat
    James Mulholland
    Vlad Isakov
    Halûk Özkaynak
    Howard H Chang
    Mitchel Klein
    Paige E Tolbert
    Journal of Exposure Science & Environmental Epidemiology, 2013, 23 : 593 - 605
  • [28] Significant but Spatiotemporal-Heterogeneous Health Risks Caused by Airborne Exposure to Multiple Toxic Trace Elements in China
    Liu, Shuhan
    Tian, Hezhong
    Bai, Xiaoxuan
    Zhu, Chuanyong
    Wu, Bobo
    Luo, Lining
    Hao, Yan
    Liu, Wei
    Lin, Shumin
    Zhao, Shuang
    Wang, Kun
    Liu, Kaiyun
    Gao, Jiajia
    Zhang, Qiang
    Zhang, Kai
    Kan, Haidong
    Liu, Yang
    Hao, Jiming
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2021, 55 (19) : 12818 - 12830
  • [29] Validation of a Spatiotemporal Land Use Regression Model Incorporating Fixed Site Monitors
    Rose, Nectarios
    Cowie, Christine
    Gillett, Robert
    Marks, Guy B.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (01) : 294 - 299
  • [30] Grid-based spatiotemporal modeling of ambient ozone to assess human exposure using environmental big data
    Meng, Xiangrui
    Pang, Kaili
    Yin, Ziyuan
    Xiang, Xinpeng
    ATMOSPHERIC POLLUTION RESEARCH, 2021, 12 (12)