Optimal Control on Nilpotent Lie Groups

被引:0
作者
F. Monroy-Pérez
A. Anzaldo-Meneses
机构
[1] Universidad Autonoma Metropolitana-Azcapotzalco.,Departamento de Ciencias Básicas
来源
Journal of Dynamical and Control Systems | 2002年 / 8卷
关键词
Nilpotent Lie algebras; optimal control; extremal curves; hyperelliptic integrals; Casimir functions;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a nilpotent Lie group and let δ = {X1,X2} be a bracket generating left invariant distribution on G. In this paper we study the left invariant optimal control problem on G defined by the differential equation ġ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( t \right) = u_1 \left( t \right)X_1 \left( {g\left( t \right)} \right) + u_2 \left( t \right)X_2 \left( {g\left( t \right)} \right),$$ \end{document} the cost functional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\Lambda \left( {g,u} \right) = \frac{1}{2}\int {\left( {u_1^2 + u_2^2 } \right)dt} ,$$ \end{document} and the family of measurable and bounded control functions t → u = (u1(t), u2(t)). We use the Pontryagin maximum principle and the associated Hamiltonian formalism to obtain the optimal controls of the system. Optimal solutions are necessarily projections of trajectories of a Hamiltonian system which in the normal case can be explicitly integrated in terms of hyperelliptic functions. Abnormal extremals (those which do not depend on the cost functional) turn out to be not strictly abnormal.
引用
收藏
页码:487 / 504
页数:17
相关论文
共 21 条
[1]  
Tilbury D.(1995)Trajectory generation for the N-trailer problem using Goursat normal form IEEE Trans. Automat. Control 40 802-819
[2]  
Murray R. M.(1996)The car with N-trailers: Characterization of the singular configurations ESAIM: Control Optim. Calc. Var. 1 241-266
[3]  
Sastry S.S.(1990)The isoholonomic problem and some applications Comm. Math. Phys. 128 565-592
[4]  
Jean F.(1995)Shortest paths for sub-Riemannian metrics on rank-two distributions Mem. Amer. Math. Soc. 118 564-499
[5]  
Montgomery R.(1999)Optimal control in the Heisenberg group J. Dynam. Control Systems 5 473-44
[6]  
Liu W.(1991)Reduction of nonholonomic variational problems to the isoperimetric problems and connections in principal bundles Mat. Zametki 49 37-192
[7]  
Sussmann H.(1910)Lès systemes de Pfaff a cinque variables et lès equations aux derivees partielles du second ordre Ann. Sci. École Norm 27 109-461
[8]  
Anzaldo-Meneses A.(1993)Rigidity of integral curves of rank 2 distributions Invent. Math 114 435-530
[9]  
Monroy-Pérez F.(1997)A nonintegrable sub-Riemannian geodesic flow on a Carnot group J. Dynam. Control Systems 3 519-75
[10]  
Vershik A. M.(1994)Nilpotent basis for a class of nonintegrable distributions with applications to trajectory generation for nonholonomic systems Math. Control Signals Systems 7 58-400