Rigidity of submanifolds in the Euclidean and spherical spaces

被引:0
作者
Jonatan F. da Silva
Henrique F. de Lima
Fábio R. dos Santos
Marco Antonio L. Velásquez
机构
[1] Universidade Federal do Ceará,Departamento de Matemática
[2] Universidade Federal de Campina Grande,Departamento de Matemática
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2020年 / 69卷
关键词
Euclidean and spherical spaces; Complete submanifolds; Pseudo-umbilical submanifolds; Parallel mean curvature vector field; Primary 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
We deal with n-dimensional complete submanifolds Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^n$$\end{document} immersed with nonzero parallel mean curvature vector field H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{H}$$\end{document} either in the Euclidean space Rn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n+p}$$\end{document} or in the Euclidean sphere Sn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}}^{n+p}$$\end{document}. In this setting, we establish sufficient conditions to guarantee that such a submanifold Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^n$$\end{document} must be pseudo-umbilical, which means that H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{H}$$\end{document} is an umbilical direction. Moreover, assuming a suitable lower bound for the Ricci curvature, we conclude that Mn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M^n$$\end{document} must be isometric to Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {S}}^{n}$$\end{document}, up to scaling.
引用
收藏
页码:159 / 165
页数:6
相关论文
共 23 条
[1]  
Alías LJ(1995)Integral formulas for compact spacelike n-submanifolds in de Sitter spaces: applications to the parallel mean curvature vector case Manuscripta Math. 87 405-416
[2]  
Romero A(1984)Stability of hypersurfaces with constant mean curvature Math. Z. 185 339-353
[3]  
Barbosa JLM(1988)Stability of hypersurfaces of constant mean curvature in Riemannian manifolds Math. Z. 197 123-138
[4]  
do Carmo M(2011)The geometry of closed conformal vector fields on Riemannian spaces Bull. Braz. Math. Soc. 42 277-300
[5]  
Barbosa JLM(1995)Rigidity of compact submanifolds in a unit sphere Kodai Math. J. 18 75-85
[6]  
do Carmo M(2001)Complete submanifolds in Euclidean spaces with parallel mean curvature vector Manuscripta Math. 105 353-366
[7]  
Eschenburg J(2015)On the geometry of complete submanifolds immersed in the hyperbolic space Bull. Belg. Math. Soc. Simon Stevin 22 707-713
[8]  
Caminha A(1954)A special Stokes’ theorem for complete Riemannian manifolds Ann. Math. 60 140-145
[9]  
Chen G(2013)Submanifolds with constant scalar curvature in a unit sphere Tohoku Math. J. 65 331-339
[10]  
Zou X(1992)An intrinsic rigidity theorem for minimal submanifolds in a sphere Arch. Math. 58 582-594