The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations

被引:36
作者
Adrian Constantin
David Lannes
机构
[1] Trinity College,School of Mathematics
[2] Université Bordeaux I,undefined
[3] IMB and CNRS UMR 5251,undefined
来源
Archive for Rational Mechanics and Analysis | 2009年 / 192卷
关键词
Water Wave; Wave Breaking; Holm Equation; Maximal Existence Time; Plunging Breaker;
D O I
暂无
中图分类号
学科分类号
摘要
In recent years two nonlinear dispersive partial differential equations have attracted much attention due to their integrable structure. We prove that both equations arise in the modeling of the propagation of shallow water waves over a flat bed. The equations capture stronger nonlinear effects than the classical nonlinear dispersive Benjamin–Bona–Mahoney and Korteweg–de Vries equations. In particular, they accommodate wave breaking phenomena.
引用
收藏
页码:165 / 186
页数:21
相关论文
共 48 条
[1]  
Angulo J.(2002)Scaling, stability and singularities for nonlinear, dispersive wave equations: the critical case Nonlinearity 15 759-786
[2]  
Bona J.L.(2008)Large time existence for 3D water-waves and asymptotics Invent. Math. 171 485-541
[3]  
Linares F.(2008)A Nash–Moser theorem for singular evolution equations Application to the Serre and Green–Naghdi equations. Indiana Univ. Math. J. 57 97-131
[4]  
Scialom M.(1972)Model equations for long waves in nonlinear dispersive systems Philos. Trans. R. Soc. Lond. A 227 47-78
[5]  
Alvarez-Samaniego B.(2007)Global conservative solutions of the Camassa–Holm equation Arch. Rat. Mech. Anal. 183 215-239
[6]  
Lannes D.(1993)An integrable shallow water equation with peaked solitons Phys. Rev. Lett. 71 1661-1664
[7]  
Alvarez-Samaniego B.(2001)On the scattering problem for the Camassa–Holm equation Proc. R. Soc. Lond. A 457 953-970
[8]  
Lannes D.(1998)Wave breaking for nonlinear nonlocal shallow water equations Acta Math. 181 229-243
[9]  
Benjamin T.B.(2006)Inverse scattering transform for the Camassa–Holm equation Inverse Probl. 22 2197-2207
[10]  
Bona J.L.(2002)Stability of the Camassa–Holm solitons J. Nonlinear Sci 12 415-422