Bilinear sums of Kloosterman sums, multiplicative congruences and average values of the divisor function over families of arithmetic progressions

被引:0
|
作者
Bryce Kerr
Igor E. Shparlinski
机构
[1] University of New South Wales,Department of Pure Mathematics
来源
Research in Number Theory | 2020年 / 6卷
关键词
Sum of the divisor function; Arithmetic progression; Bilinear sums of Kloosterman sums; Primary: 11N37; Secondary: 11L07;
D O I
暂无
中图分类号
学科分类号
摘要
Given a positive integer n, let τ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n)$$\end{document} count the number of divisors of n. We obtain several asymptotic formulas for the sum of τ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau (n)$$\end{document} with n≤x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \le x$$\end{document} in an arithmetic progressions n≡a(modq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \equiv a \pmod q$$\end{document} on average over a from a set of several consecutive elements of reduced residues modulo q and on average over arbitrary sets. The main goal is to obtain nontrivial results for q≥x2/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \ge x^{2/3}$$\end{document} with a small amount of averaging over a. We recall that for individual values of a the limit of current methods is q≤x2/3-ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \le x^{2/3-\varepsilon }$$\end{document} for an arbitrary fixed ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon > 0$$\end{document}. Our method builds on an approach due to Blomer (Q J Math 139:707–768, 2008) based on the Voronoi summation formula which we combine with some recent results on bilinear sums of Kloosterman sums due Kowalski et al. (Ann Math 186:413–500, 2017) and Shparlinski (Trans Am Math Soc 371:8679–8697, 2019). We also make use of extra applications of the Voronoi summation formula after expanding into Kloosterman sums and this reduces the problem to estimating the number of solutions to multiplicative congruences.
引用
收藏
相关论文
共 5 条