A Predictor-corrector algorithm with multiple corrections for convex quadratic programming

被引:0
作者
Zhongyi Liu
Yue Chen
Wenyu Sun
Zhihui Wei
机构
[1] Hohai University,College of Science
[2] Nanjing University of Aeronautics and Astronautics,Jincheng College
[3] Nanjing Normal University,School of Mathematical Science
[4] Nanjing University of Science and Technology,School of Computer Science and Technology
来源
Computational Optimization and Applications | 2012年 / 52卷
关键词
Convex quadratic programming; Primal-dual interior-point method; Predictor-corrector; Polynomial complexity;
D O I
暂无
中图分类号
学科分类号
摘要
Recently an infeasible interior-point algorithm for linear programming (LP) was presented by Liu and Sun. By using similar predictor steps, we give a (feasible) predictor-corrector algorithm for convex quadratic programming (QP). We introduce a (scaled) proximity measure and a dynamical forcing factor (centering parameter). The latter is used to force the duality gap to decrease. The algorithm can decrease the duality gap monotonically. Polynomial complexity can be proved and the result coincides with the best one for LP, namely, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\sqrt{n}\log n\mu^{0}/\varepsilon)$\end{document}.
引用
收藏
页码:373 / 391
页数:18
相关论文
共 50 条
[31]   A SECOND ORDER MEHROTRA-TYPE PREDICTOR-CORRECTOR ALGORITHM FOR SEMIDEFINITE OPTIMIZATION [J].
Mingwang ZHANG .
JournalofSystemsScience&Complexity, 2012, 25 (06) :1108-1121
[32]   A second order Mehrotra-type predictor-corrector algorithm for semidefinite optimization [J].
Mingwang Zhang .
Journal of Systems Science and Complexity, 2012, 25 :1108-1121
[33]   ON MEHROTRA-TYPE PREDICTOR-CORRECTOR ALGORITHMS [J].
Salahi, M. ;
Peng, J. ;
Terlaky, T. .
SIAM JOURNAL ON OPTIMIZATION, 2008, 18 (04) :1377-1397
[34]   A second order Mehrotra-type predictor-corrector algorithm for semidefinite optimization [J].
Zhang, Mingwang .
JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2012, 25 (06) :1108-1121
[35]   A predictor-corrector method for structural nonlinear analysis [J].
Kim, JH ;
Kim, YH .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 191 (8-10) :959-974
[36]   Stability ordinates of Adams predictor-corrector methods [J].
Michelle L. Ghrist ;
Bengt Fornberg ;
Jonah A. Reeger .
BIT Numerical Mathematics, 2015, 55 :733-750
[37]   Stability ordinates of Adams predictor-corrector methods [J].
Ghrist, Michelle L. ;
Fornberg, Bengt ;
Reeger, Jonah A. .
BIT NUMERICAL MATHEMATICS, 2015, 55 (03) :733-750
[38]   General Central Path Following Algorithm for Convex Quadratic Programming [J].
Chen, Dong-hai ;
Zhang, Ming-wang .
2011 INTERNATIONAL CONFERENCE ON FUTURE COMPUTER SCIENCE AND APPLICATION (FCSA 2011), VOL 3, 2011, :56-60
[39]   A Predictor-corrector Affine Power Flow Iteration Algorithm Based on Fixed Noise Element [J].
Shao Z. ;
Huang G. ;
Zhang Y. ;
Chen F. .
Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2021, 41 (07) :2331-2340
[40]   A Corrector–Predictor Path-Following Method for Convex Quadratic Symmetric Cone Optimization [J].
Behrouz Kheirfam .
Journal of Optimization Theory and Applications, 2015, 164 :246-260