A Predictor-corrector algorithm with multiple corrections for convex quadratic programming

被引:0
作者
Zhongyi Liu
Yue Chen
Wenyu Sun
Zhihui Wei
机构
[1] Hohai University,College of Science
[2] Nanjing University of Aeronautics and Astronautics,Jincheng College
[3] Nanjing Normal University,School of Mathematical Science
[4] Nanjing University of Science and Technology,School of Computer Science and Technology
来源
Computational Optimization and Applications | 2012年 / 52卷
关键词
Convex quadratic programming; Primal-dual interior-point method; Predictor-corrector; Polynomial complexity;
D O I
暂无
中图分类号
学科分类号
摘要
Recently an infeasible interior-point algorithm for linear programming (LP) was presented by Liu and Sun. By using similar predictor steps, we give a (feasible) predictor-corrector algorithm for convex quadratic programming (QP). We introduce a (scaled) proximity measure and a dynamical forcing factor (centering parameter). The latter is used to force the duality gap to decrease. The algorithm can decrease the duality gap monotonically. Polynomial complexity can be proved and the result coincides with the best one for LP, namely, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\sqrt{n}\log n\mu^{0}/\varepsilon)$\end{document}.
引用
收藏
页码:373 / 391
页数:18
相关论文
共 50 条
[21]   A superlinearly convergent wide-neighborhood predictor-corrector interior-point algorithm for linear programming [J].
Ma, Xiaojue ;
Liu, Hongwei .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 55 (1-2) :669-682
[22]   A Study of the Complexity of an Infeasible Predictor-Corrector Variant of Mehrotra Algorithm [J].
Teixeira, Ana Paula ;
Almeida, Regina .
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT II, 2014, 8580 :253-+
[23]   Mars entry guidance based on segmented guidance predictor-corrector algorithm [J].
Xia, Yuanqing ;
Shen, Ganghui ;
Zhou, Liuyu ;
Sun, Haoran .
CONTROL ENGINEERING PRACTICE, 2015, 45 :79-85
[24]   A Mehrotra predictor-corrector interior-point algorithm for semidefinite optimization [J].
Pirhaji, Mohammad ;
Zangiabadi, Maryam ;
Mansouri, Hossein .
TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (01) :168-185
[25]   A robust predictor-corrector entry guidance [J].
Wang Tao ;
Zhang Hongbo ;
Zeng Liang ;
Tang Guojian .
AEROSPACE SCIENCE AND TECHNOLOGY, 2017, 66 :103-111
[26]   A predictor-corrector algorithm for the coupling of stiff ODEs to a particle population balance [J].
Celnik, Matthew ;
Patterson, Robert ;
Kraft, Markus ;
Wagner, Wolfgang .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (08) :2758-2769
[27]   Improved predictor-corrector real-time NURBS interpolation algorithm [J].
Liu N. ;
Wang G. .
Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2010, 38 (01) :119-123+127
[28]   A Mehrotra-type Predictor-corrector Algorithm for Monotonic Linear Complementarity Problem [J].
Zhou Yiyuan ;
Zhang Mingwang .
ISISE 2008: INTERNATIONAL SYMPOSIUM ON INFORMATION SCIENCE AND ENGINEERING, VOL 2, 2008, :475-480
[29]   An infeasible-interior-point predictor-corrector algorithm for the P*-geometric LCP [J].
Anitescu, M ;
Lesaja, G ;
Potra, FA .
APPLIED MATHEMATICS AND OPTIMIZATION, 1997, 36 (02) :203-228
[30]   An infeasible-interior-point predictor-corrector algorithm for theP*-geometric LCP [J].
M. Anitescu ;
G. Lesaja ;
F. A. Potra .
Applied Mathematics and Optimization, 1997, 36 (2) :203-228