The dualizing complex of F-injective and Du Bois singularities

被引:0
作者
Bhargav Bhatt
Linquan Ma
Karl Schwede
机构
[1] University of Michigan,Department of Mathematics
[2] University of Utah,Department of Mathematics
来源
Mathematische Zeitschrift | 2018年 / 288卷
关键词
-injective; Du Bois; Dualizing complex; Local cohomology; 14F18; 13A35; 14B05;
D O I
暂无
中图分类号
学科分类号
摘要
Let (R,m,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R,\mathfrak {m}, k)$$\end{document} be an excellent local ring of equal characteristic. Let j be a positive integer such that Hmi(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_\mathfrak {m}^i(R)$$\end{document} has finite length for every 0≤i<j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le i <j$$\end{document}. We prove that if R is F-injective in characteristic p>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>0$$\end{document} or Du Bois in characteristic 0, then the truncated dualizing complex [inline-graphic not available: see fulltext] is quasi-isomorphic to a complex of k-vector spaces. As a consequence, F-injective or Du Bois singularities with isolated non-Cohen–Macaulay locus are Buchsbaum. Moreover, when R has F-rational or rational singularities on the punctured spectrum, we obtain stronger results generalizing Ishida (The dualizing complexes of normal isolated Du Bois singularities. Algebraic and topological theories, 387–390, 1984) and Ma (Math Ann 362:25–42, 2015).
引用
收藏
页码:1143 / 1155
页数:12
相关论文
共 25 条
  • [1] Blickle M(2015)-singularities via alterations Am. J. Math. 137 61-109
  • [2] Schwede K(2005)A simplified proof of desingularization and applications Rev. Mat. Iberoamericana 21 349-458
  • [3] Tucker K(1981)Complexe de de Rham filtré d’une variété singulière Bull. Soc. Math. France 109 41-81
  • [4] Bravo AM(2008)The Frobenius structure of local cohomology Algebra Number Theory 2 721-754
  • [5] Encinas S(1983)-purity and rational singularity Trans. Am. Math. Soc. 278 461-480
  • [6] Villamayor O(2014)Fundamental theorems for semi log canonical pairs Algebra Geom. 1 194-228
  • [7] Du Bois P(1990)Tight closure, invariant theory, and the Briançon–Skoda theorem J. Am. Math. Soc. 3 31-116
  • [8] Enescu F(1986)Higher direct images of dualizing sheaves I Ann. Math. (2) 123 11-42
  • [9] Hochster M(2010)Log canonical singularities are Du Bois J. Am. Math. Soc. 23 791-813
  • [10] Fedder R(1976)On Noetherian rings of characteristic Am. J. Math. 98 999-1013