Geometric property (T)

被引:0
作者
Rufus Willett
Guoliang Yu
机构
[1] University of Hawai’i at Mānoa,Department of Mathematics
[2] Texas A&M University,Department of Mathematics
[3] Shanghai Center for Mathematical Sciences,undefined
来源
Chinese Annals of Mathematics, Series B | 2014年 / 35卷
关键词
Coarse geometry; Expander; Roe algebra; Property (T); 20F69; 46L85; 51F99;
D O I
暂无
中图分类号
学科分类号
摘要
This paper discusses “geometric property (T)”. This is a property of metric spaces introduced in earlier works of the authors for its applications to K-theory. Geometric property (T) is a strong form of “expansion property”, in particular, for a sequence (Xn) of bounded degree finite graphs, it is strictly stronger than (Xn) being an expander in the sense that the Cheeger constants h(Xn) are bounded below.
引用
收藏
页码:761 / 800
页数:39
相关论文
共 24 条
  • [1] Block J(1992)Aperiodic tilings, positive scalar curvature and amenability of spaces J. Amer. Math. Soc. 5 907-918
  • [2] Weinberger S(2007)Property A, partial translation structures and uniform embeddings in groups J. London Math. Soc. 76 479-497
  • [3] Brodzki J(2013)The maximal coarse Baum-Connes conjecture for spaces which admit a fibred coarse embedding into Hilbert space Adv. Math. 249 88-130
  • [4] Niblo G(2008)Geometrization of the strong Novikov conjecture for residually finite groups J. Reine Angew. Math. 621 159-189
  • [5] Wright N(2009)-theory for the maximal Roe algebra of certain expanders J. Funct. Anal. 257 3239-3292
  • [6] Chen X(2002)The coarse Baum-Connes conjecture and groupoids Topology 41 807-834
  • [7] Wang Q(1999)La conjecture de Baum-Connes pour les feuilletages moyennables K-theory 17 215-264
  • [8] Yu G(1984)Minimal projections, integrable representations and property (T) Arch. Math. (Basel) 43 397-406
  • [9] Gong G(2012)Higher index theory for certain expanders and Gromov monster groups I Adv. Math. 229 1380-1416
  • [10] Wang Q(2012)Higher index theory for certain expanders and Gromov monster groups II Adv. Math. 229 1762-1803