Global convergence of some modified PRP nonlinear conjugate gradient methods

被引:0
作者
Zhi-feng Dai
Bo-Shi Tian
机构
[1] Hunan University,College of Mathematics and Econometrics
[2] Changsha University of Science and Technology,College of Mathematics and Computational Science
来源
Optimization Letters | 2011年 / 5卷
关键词
Unconstrained optimization; Conjugate gradient method; Line search; Sufficient descent property; Global convergence;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, similar to Hager and Zhang (SIAM J Optim 16:170–192, 2005), Yu (Nonlinear self-scaling conjugate gradient methods for large-scale optimization problems. Thesis of Doctors Degree, Sun Yat-Sen University, 2007) and Yuan (Optim Lett 3:11–21, 2009) proposed modified PRP conjugate gradient methods which generate sufficient descent directions without any line searches. In order to obtain the global convergence of their algorithms, they need the assumption that the stepsize is bounded away from zero. In this paper, we take a little modification to these methods such that the modified methods retain sufficient descent property. Without requirement of the positive lower bound of the stepsize, we prove that the proposed methods are globally convergent. Some numerical results are also reported.
引用
收藏
页码:615 / 630
页数:15
相关论文
共 35 条
  • [1] Hestenes M.R.(1952)Methods of conjugate gradients for solving linear systems J. Res. Natl. Bur. Stand. Sect. B 49 409-432
  • [2] Stiefel E.L.(1964)Function minimization by conjugate gradients Comput. J. 7 149-154
  • [3] Fletcher R.(1969)Note surla convergence des méthodes de directions conjuguées Rev. Fr. Inf. Rech. Operatonelle 3e Année 16 35-43
  • [4] Reeves C.(1969)The conjugate gradient method in extreme problems USSR Comput. Math. Math. Phys. 9 94-112
  • [5] Polak B.(2000)A nonlinear conjugate gradient with a strong global convergence properties SIAM J. Optim. 10 177-182
  • [6] Ribiére G.(1985)Descent property and global convergence of the Fletcher–Reeves method with inexact line search IMA J. Numer. Anal. 5 121-124
  • [7] Polyak B.T.(1996)Convergence properties of the Fletcher–Reeves method IMA J. Numer. Anal. 16 155-164
  • [8] Dai Y.(1992)Global convergence properties of conjugate gradient methods for optimization SIAM. J. Optim. 2 21-42
  • [9] Yuan Y.(1997)A globally convergent version of the Polak–Ribiére gradient method Math. Program. 78 375-391
  • [10] AL-Baali M.(2005)A new conjugate gradient method with guaranteed descent and an efficient line search SIAM J. Optim. 16 170-192