On the Star-Critical Ramsey Number of a Forest Versus Complete Graphs

被引:0
作者
Azam Kamranian
Ghaffar Raeisi
机构
[1] Shahrekord University,Department of Mathematical Sciences
来源
Iranian Journal of Science and Technology, Transactions A: Science | 2022年 / 46卷
关键词
Ramsey number; Star-critical; Size Ramsey; Forest; Complete graphs; 05D10; 05C55; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
Let G and G1,G2,…,Gt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_1, G_2, \ldots , G_t$$\end{document} be given graphs. By G→(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\rightarrow (G_1, G_2, \ldots , G_t)$$\end{document}, we mean if the edges of G are arbitrarily colored by t colors, then for some i, 1≤i≤t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i\le t$$\end{document}, the spanning subgraph of G whose edges are colored with the i-th color, contains a copy of Gi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_i$$\end{document}. The Ramsey number R(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(G_1, G_2, \ldots , G_t)$$\end{document} is the smallest positive integer n such that Kn→(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n\rightarrow (G_1, G_2, \ldots , G_t)$$\end{document}, and the size Ramsey number R^(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{R}}(G_1, G_2, \ldots , G_t)$$\end{document} is defined as min{|E(G)|:G→(G1,G2,…,Gt)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{|E(G)|:~G\rightarrow (G_1, G_2, \ldots , G_t)\}$$\end{document}. Also, for given graphs G1,G2,…,Gt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_1, G_2, \ldots , G_t$$\end{document} with r=R(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=R(G_1, G_2, \ldots , G_t)$$\end{document}, the star-critical Ramsey number R∗(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_*(G_1, G_2, \ldots , G_t)$$\end{document} is defined as min{δ(G):G⊆Kr,G→(G1,G2,…,Gt)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{\delta (G):~G\subseteq K_r, ~G\rightarrow (G_1, G_2, \ldots , G_t)\}$$\end{document}. In this paper, the Ramsey number and also the star-critical Ramsey number of a forest versus any number of complete graphs will be computed exactly in terms of the Ramsey number of the complete graphs. As a result, the computed star-critical Ramsey number is used to give a tight bound for the size Ramsey number of a forest versus a complete graph.
引用
收藏
页码:499 / 505
页数:6
相关论文
共 50 条
[31]   RAMSEY NUMBERS FOR A LARGE TREE VERSUS MULTIPLE COPIES OF COMPLETE GRAPHS OF DIFFERENT SIZES [J].
Hu, Sinan ;
Luo, Zhidan .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2025, 45 (02) :419-429
[32]   On Ramsey numbers for special complete distance graphs [J].
Raigorodskii, A. M. .
MATHEMATICAL NOTES, 2007, 82 (3-4) :426-429
[33]   On Ramsey numbers for special complete distance graphs [J].
A. M. Raigorodskii .
Mathematical Notes, 2007, 82 :426-429
[34]   THE SIZE RAMSEY NUMBER OF GRAPHS WITH BOUNDED TREEWIDTH [J].
Kamcev, Nina ;
Liebenau, Anita ;
Wood, David R. ;
Yepremyan, Liana .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (01) :281-293
[35]   The Ramsey number for two graphs of order 5 [J].
Bataineh, Mohammad S. ;
Vetrik, Tomas ;
Jaradat, Mohammed M. M. ;
Rabaiah, Ayat M. M. .
JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2018, 21 (7-8) :1523-1528
[36]   VLSI layouts of complete graphs and star graphs [J].
Yeh, CH ;
Parhami, B .
INFORMATION PROCESSING LETTERS, 1998, 68 (01) :39-45
[37]   On characterizing the critical graphs for matching Ramsey numbers [J].
Xu, Chuandong ;
Yang, Hongna ;
Zhang, Shenggui .
DISCRETE APPLIED MATHEMATICS, 2020, 287 :15-20
[38]   Three-Color Ramsey Number of an Odd Cycle Versus Bipartite Graphs with Small Bandwidth [J].
You, Chunlin ;
Lin, Qizhong .
GRAPHS AND COMBINATORICS, 2023, 39 (03)
[39]   Three-Color Ramsey Number of an Odd Cycle Versus Bipartite Graphs with Small Bandwidth [J].
Chunlin You ;
Qizhong Lin .
Graphs and Combinatorics, 2023, 39
[40]   Further Ramsey numbers for small complete bipartite graphs [J].
Lortz, R ;
Mengersen, I .
ARS COMBINATORIA, 2006, 79 :195-203