On the Star-Critical Ramsey Number of a Forest Versus Complete Graphs

被引:0
作者
Azam Kamranian
Ghaffar Raeisi
机构
[1] Shahrekord University,Department of Mathematical Sciences
来源
Iranian Journal of Science and Technology, Transactions A: Science | 2022年 / 46卷
关键词
Ramsey number; Star-critical; Size Ramsey; Forest; Complete graphs; 05D10; 05C55; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
Let G and G1,G2,…,Gt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_1, G_2, \ldots , G_t$$\end{document} be given graphs. By G→(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\rightarrow (G_1, G_2, \ldots , G_t)$$\end{document}, we mean if the edges of G are arbitrarily colored by t colors, then for some i, 1≤i≤t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i\le t$$\end{document}, the spanning subgraph of G whose edges are colored with the i-th color, contains a copy of Gi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_i$$\end{document}. The Ramsey number R(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(G_1, G_2, \ldots , G_t)$$\end{document} is the smallest positive integer n such that Kn→(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n\rightarrow (G_1, G_2, \ldots , G_t)$$\end{document}, and the size Ramsey number R^(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{R}}(G_1, G_2, \ldots , G_t)$$\end{document} is defined as min{|E(G)|:G→(G1,G2,…,Gt)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{|E(G)|:~G\rightarrow (G_1, G_2, \ldots , G_t)\}$$\end{document}. Also, for given graphs G1,G2,…,Gt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_1, G_2, \ldots , G_t$$\end{document} with r=R(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=R(G_1, G_2, \ldots , G_t)$$\end{document}, the star-critical Ramsey number R∗(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_*(G_1, G_2, \ldots , G_t)$$\end{document} is defined as min{δ(G):G⊆Kr,G→(G1,G2,…,Gt)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{\delta (G):~G\subseteq K_r, ~G\rightarrow (G_1, G_2, \ldots , G_t)\}$$\end{document}. In this paper, the Ramsey number and also the star-critical Ramsey number of a forest versus any number of complete graphs will be computed exactly in terms of the Ramsey number of the complete graphs. As a result, the computed star-critical Ramsey number is used to give a tight bound for the size Ramsey number of a forest versus a complete graph.
引用
收藏
页码:499 / 505
页数:6
相关论文
共 50 条
[21]   Ramsey Numbers of Some Bipartite Graphs Versus Complete Graphs [J].
Jiang, Tao ;
Salerno, Michael .
GRAPHS AND COMBINATORICS, 2011, 27 (01) :121-128
[22]   Ramsey Numbers for Complete Graphs Versus Generalized Fans [J].
Wang, Maoqun ;
Qian, Jianguo .
GRAPHS AND COMBINATORICS, 2022, 38 (06)
[23]   Ramsey Numbers for Complete Graphs Versus Generalized Fans [J].
Maoqun Wang ;
Jianguo Qian .
Graphs and Combinatorics, 2022, 38
[24]   The Ramsey number of a long even cycle versus a star [J].
Allen, Peter ;
Luczak, Tomasz ;
Polcyn, Joanna ;
Zhang, Yanbo .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 162 :144-153
[25]   The Ramsey Number of 3-Uniform Loose Path Versus Star [J].
Zhang, Fangfang ;
Chen, Yaojun .
GRAPHS AND COMBINATORICS, 2022, 38 (01)
[26]   The Ramsey Number of 3-Uniform Loose Path Versus Star [J].
Fangfang Zhang ;
Yaojun Chen .
Graphs and Combinatorics, 2022, 38
[27]   Ramsey Numbers of Complete Bipartite Graphs [J].
Liu, Meng ;
Du, Bangwei .
GRAPHS AND COMBINATORICS, 2025, 41 (01)
[28]   Generalized Ramsey Numbers for Graphs with Three Disjoint Cycles Versus a Complete Graph [J].
Fujita, Shinya .
ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (02)
[29]   A note on the Ramsey number for small graphs [J].
Vetrik, Tomas ;
Jaradat, Mohammed M. M. ;
Bataineh, Mohammad S. .
JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (02) :463-470
[30]   ON THE RAMSEY NUMBERS OF NON-STAR TREES VERSUS CONNECTED GRAPHS OF ORDER SIX [J].
Lortz, Roland ;
Mengersen, Ingrid .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (02) :331-349