On the Star-Critical Ramsey Number of a Forest Versus Complete Graphs

被引:0
作者
Azam Kamranian
Ghaffar Raeisi
机构
[1] Shahrekord University,Department of Mathematical Sciences
来源
Iranian Journal of Science and Technology, Transactions A: Science | 2022年 / 46卷
关键词
Ramsey number; Star-critical; Size Ramsey; Forest; Complete graphs; 05D10; 05C55; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
Let G and G1,G2,…,Gt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_1, G_2, \ldots , G_t$$\end{document} be given graphs. By G→(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G\rightarrow (G_1, G_2, \ldots , G_t)$$\end{document}, we mean if the edges of G are arbitrarily colored by t colors, then for some i, 1≤i≤t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i\le t$$\end{document}, the spanning subgraph of G whose edges are colored with the i-th color, contains a copy of Gi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_i$$\end{document}. The Ramsey number R(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(G_1, G_2, \ldots , G_t)$$\end{document} is the smallest positive integer n such that Kn→(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n\rightarrow (G_1, G_2, \ldots , G_t)$$\end{document}, and the size Ramsey number R^(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{R}}(G_1, G_2, \ldots , G_t)$$\end{document} is defined as min{|E(G)|:G→(G1,G2,…,Gt)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{|E(G)|:~G\rightarrow (G_1, G_2, \ldots , G_t)\}$$\end{document}. Also, for given graphs G1,G2,…,Gt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_1, G_2, \ldots , G_t$$\end{document} with r=R(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=R(G_1, G_2, \ldots , G_t)$$\end{document}, the star-critical Ramsey number R∗(G1,G2,…,Gt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_*(G_1, G_2, \ldots , G_t)$$\end{document} is defined as min{δ(G):G⊆Kr,G→(G1,G2,…,Gt)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{\delta (G):~G\subseteq K_r, ~G\rightarrow (G_1, G_2, \ldots , G_t)\}$$\end{document}. In this paper, the Ramsey number and also the star-critical Ramsey number of a forest versus any number of complete graphs will be computed exactly in terms of the Ramsey number of the complete graphs. As a result, the computed star-critical Ramsey number is used to give a tight bound for the size Ramsey number of a forest versus a complete graph.
引用
收藏
页码:499 / 505
页数:6
相关论文
共 50 条
  • [21] Ramsey Numbers of Some Bipartite Graphs Versus Complete Graphs
    Jiang, Tao
    Salerno, Michael
    GRAPHS AND COMBINATORICS, 2011, 27 (01) : 121 - 128
  • [22] Ramsey Numbers for Complete Graphs Versus Generalized Fans
    Wang, Maoqun
    Qian, Jianguo
    GRAPHS AND COMBINATORICS, 2022, 38 (06)
  • [23] Ramsey Numbers for Complete Graphs Versus Generalized Fans
    Maoqun Wang
    Jianguo Qian
    Graphs and Combinatorics, 2022, 38
  • [24] The Ramsey number of a long even cycle versus a star
    Allen, Peter
    Luczak, Tomasz
    Polcyn, Joanna
    Zhang, Yanbo
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 162 : 144 - 153
  • [25] The Ramsey Number of 3-Uniform Loose Path Versus Star
    Zhang, Fangfang
    Chen, Yaojun
    GRAPHS AND COMBINATORICS, 2022, 38 (01)
  • [26] The Ramsey Number of 3-Uniform Loose Path Versus Star
    Fangfang Zhang
    Yaojun Chen
    Graphs and Combinatorics, 2022, 38
  • [27] Ramsey Numbers of Complete Bipartite Graphs
    Liu, Meng
    Du, Bangwei
    GRAPHS AND COMBINATORICS, 2025, 41 (01)
  • [28] Generalized Ramsey Numbers for Graphs with Three Disjoint Cycles Versus a Complete Graph
    Fujita, Shinya
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (02)
  • [29] A note on the Ramsey number for small graphs
    Vetrik, Tomas
    Jaradat, Mohammed M. M.
    Bataineh, Mohammad S.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (02) : 463 - 470
  • [30] ON THE RAMSEY NUMBERS OF NON-STAR TREES VERSUS CONNECTED GRAPHS OF ORDER SIX
    Lortz, Roland
    Mengersen, Ingrid
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (02) : 331 - 349