Regularity criterion for 3d navier-stokes equations in terms of the direction of the velocity

被引:0
作者
Alexis Vasseur
机构
[1] University of Texas at Austin,Department of Mathematics
来源
Applications of Mathematics | 2009年 / 54卷
关键词
Navier-Stokes; fluid mechanics; regularity; PRodi-Serrin criteria;
D O I
暂无
中图分类号
学科分类号
摘要
In this short note we give a link between the regularity of the solution u to the 3D Navier-Stokes equation and the behavior of the direction of the velocity u/|u|. It is shown that the control of div(u/|u|) in a suitable Lt/p (Lx/q) norm is enough to ensure global regularity. The result is reminiscent of the criterion in terms of the direction of the vorticity, introduced first by Constantin and Fefferman. However, in this case the condition is not on the vorticity but on the velocity itself. The proof, based on very standard methods, relies on a straightforward relation between the divergence of the direction of the velocity and the growth of energy along streamlines.
引用
收藏
页码:47 / 52
页数:5
相关论文
共 20 条
[1]  
Beale J.T.(1984)Remarks on the breakdown of smooth solutions for the 3-D Euler equations Commun. Math. Phys. 94 61-66
[2]  
Kato T.(1995)A new regularity class for the Navier-Stokes equations in ℝ Chin. Ann. Math., Ser. B 16 407-412
[3]  
Majda A.(1993)Direction of vorticity and the problem of global regularity for the Navier-Stokes equations Indiana Univ. Math. J. 42 775-789
[4]  
Beirão da Veiga H.(1972)The initial value problem for the Navier-Stokes equations with data in Arch. Ration. Mech. Anal. 45 222-240
[5]  
Constantin P.(1951)Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen Math. Nachr. 4 213-231
[6]  
Fefferman C.(2003)-solutions of Navier-Stokes equations and backward uniqueness Usp. Mat. Nauk 58 3-44
[7]  
Fabes E.B.(2000)Bilinear estimates in BMO and the Navier-Stokes equations Math. Z. 235 173-194
[8]  
Jones B. F.(1934)Sur le mouvement d’un liquide visqueux emplissant l’espace Acta. Math. 63 193-248
[9]  
Rivière N.M.(2004)Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity Appl. Math. 49 483-493
[10]  
Hopf E.(1988)On partial regularity results for the Navier-Stokes equations Commun. Pure Appl. Math. 41 437-458