On Huppert’s ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}-σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} conjecture

被引:0
作者
Yang Liu
Yong Yang
机构
[1] Tianjin Normal University,School of Mathematical Science
[2] Three Gorges Mathematical Research Center,College of Science, China Three Gorges University
[3] Texas State University,Department of Mathematics
关键词
Huppert’s ; -; conjecture; Character degrees; Prime divisors; 20C15; 20C20;
D O I
10.1007/s00605-021-01577-x
中图分类号
学科分类号
摘要
Let G be a finite solvable group, ρ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho (G)$$\end{document} the set of those primes that divide the degree of some irreducible character of G and σ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (G)$$\end{document} the maximum number of primes dividing the degree of an irreducible character of G. We show that |ρ(G)|≤3σ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\rho (G)| \le 3\sigma (G)$$\end{document}. This improves the best known bound |ρ(G)|≤3σ(G)+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\rho (G)| \le 3\sigma (G)+2$$\end{document} given by Manz and Wolf in [6].
引用
收藏
页码:299 / 309
页数:10
相关论文
共 11 条
[1]  
Casolo C(2007)Prime divisors of irreducible character degrees and of conjugacy class sizes in finite groups J. Group Theory 10 571-583
[2]  
Dolfi S(1987)Primes dividing character degrees and character orbit sizes Proc. Am. Math. Soci. 101 219-225
[3]  
Gluck D(1987)Prime factors of character degrees of solvable groups Bull. Lond. Math. Soc. 19 431-437
[4]  
Gluck D(1986)Solvable group character degrees and sets of primes J. Algebra 104 209-230
[5]  
Manz O(1993)Arithmetically long orbits of solvable linear groups Illinois J. Math. 37 652-665
[6]  
Isaacs IM(2010)Regular orbits of finite primitive solvable groups J. Algebra 323 2735-2755
[7]  
Manz O(2011)Regular orbits of finite primitive solvable groups, II J. Algebra 341 23-34
[8]  
Wolf TR(2015)Blocks of small defect J. Algebra 429 192-212
[9]  
Yang Y(undefined)undefined undefined undefined undefined-undefined
[10]  
Yang Y(undefined)undefined undefined undefined undefined-undefined