On a planar Choquard equation involving exponential critical growth

被引:0
|
作者
J. Carvalho
E. Medeiros
B. Ribeiro
机构
[1] Universidade Federal da Paraíba,Departamento de Matemática
来源
Zeitschrift für angewandte Mathematik und Physik | 2021年 / 72卷
关键词
Choquard equation; Hardy-Littlewood-Sobolev inequality; Weighted Sobolev embedding; Trudinger-Moser inequality; Riesz Potential; 35J66; 35J20; 35J60; 35B33;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate a class of planar Choquard equation with Riesz potential of logarithm type and the potential V and the weights K, Q decaying to zero at infinity. We prove a weighted Sobolev embedding and a weighted Trudinger–Moser type inequality using a convenient decomposition. These results allow us to address, via variational methods, the existence of solutions to the Choquard equation when the nonlinearities possess critical exponential growth in the Trudinger–Moser sense.
引用
收藏
相关论文
共 50 条
  • [1] On a planar Choquard equation involving exponential critical growth
    Carvalho, J.
    Medeiros, E.
    Ribeiro, B.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (06):
  • [2] On the planar Choquard equation with indefinite potential and critical exponential growth
    Qin, Dongdong
    Tang, Xianhua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 285 : 40 - 98
  • [3] Infinitely many sign-changing solutions for a kind of planar Choquard equation with critical exponential growth
    Dai, Siyu
    Chen, Shaoxiong
    Gu, Guangze
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2025,
  • [4] Multiplicity and concentration of solutions for a Choquard equation with critical exponential growth in RN
    Deng, Shengbing
    Tian, Xingliang
    Xiong, Sihui
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (03):
  • [5] Quasilinear Schrodinger equation involving critical Hardy potential and Choquard type exponential nonlinearity
    Malhotra, Shammi
    Goyal, Sarika
    Sreenadh, K.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 548 (01)
  • [6] Positive solutions with prescribed mass for a planar Choquard equation with critical growth
    Huang, Ling
    Romani, Giulio
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2025, 76 (03):
  • [7] Strongly indefinite Choquard equation in R2 with critical exponential growth
    Gao, Quan
    Chen, Weiya
    Qin, Dongdong
    Wu, Qingfang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (12) : 7744 - 7759
  • [8] Quasilinear Choquard equations involving N-Laplacian and critical exponential nonlinearity
    Biswas, Reshmi
    Goyal, Sarika
    Sreenadh, Konijeti
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 9483 - 9503
  • [9] SEMICLASSICAL GROUND STATE SOLUTIONS FOR A CHOQUARD TYPE EQUATION IN R2 WITH CRITICAL EXPONENTIAL GROWTH
    Yang, Minbo
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2018, 24 (01) : 177 - 209
  • [10] Existence of solutions for a fractional Choquard-type equation in R with critical exponential growth
    Clemente, Rodrigo
    de Albuquerque, Jose Carlos
    Barboza, Eudes
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01):