Asymptotic behavior of a stochastic SIR model with general incidence rate and nonlinear Lévy jumps

被引:0
作者
Qing Yang
Xinhong Zhang
Daqing Jiang
机构
[1] College of Science,Nonlinear Analysis and Applied Mathematics(NAAM)
[2] China University of Petroleum (East China),Research Group, Department of Mathematics
[3] King Abdulaziz University,undefined
来源
Nonlinear Dynamics | 2022年 / 107卷
关键词
SIR model; Lévy jumps; Incidence rate; Extinction; Ergodic stationary distribution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a stochastic SIR epidemic model with general disease incidence rate and perturbation caused by nonlinear white noise and Le´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{e}$$\end{document}vy jumps. First of all, we study the existence and uniqueness of the global positive solution of the model. Then, we establish a threshold λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} by investigating the one-dimensional model to determine the extinction and persistence of the disease. To verify the model has an ergodic stationary distribution, we adopt a new method which can obtain the sufficient and almost necessary conditions for the extinction and persistence of the disease. Finally, some numerical simulations are carried out to illustrate our theoretical results.
引用
收藏
页码:2975 / 2993
页数:18
相关论文
共 128 条
[1]  
Kermack WO(1927)Contributions to the mathematical theory of epidemics (Part I) Proc. Soc. London Series A 115 700-721
[2]  
Mckendrick AG(2016)Classification of asymptotic behavior in a stochastic SIR model SIAMJ. Appl. Dyn. Syst. 15 1062-1084
[3]  
Dieu NT(2011)Asymptotic behavior of global positive solution to a stochastic SIR model Math. Comput. Model. 54 221-232
[4]  
Nguyen DH(2014)Survival and stationary distribution of a SIR epidemic model with stochastic perturbations Appl. Math. Comput. 244 118-131
[5]  
Du NH(2013)Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates Nonlinear Anal. RWA. 14 1286-1299
[6]  
Yin G(2014)Long-time behaviou of a stochastic SIR model Appl. Math. Comp. 236 1-9
[7]  
Jiang D(1991)Non-linear transmission rates and the dynamics of infectious disease J. Theoret. Biol. 153 301-321
[8]  
Yu J(1978)A generalization of the Kermack-McKendrick deterministic epidemic model Math. Biosci. 42 43-61
[9]  
Ji C(2014)A mathematical model of avian influenza with half-saturated incidence Theory Biosci. 133 23-38
[10]  
Zhou Y(1977)A classification of the second order degenerate elliptic operators and its probabilistic characerization Z. Wahrsch. Verw. Gebiete 39 81-84