Molecular characterization of Acidithiobacillus ferrooxidans and A. thiooxidans strains isolated from mine wastes in Brazil

被引:1
作者
Paulino L.C. [1 ]
Bergamo R.F. [1 ]
De Mello M.P. [1 ]
Garcia O. [1 ]
Jr. [1 ]
Manfio G.P. [1 ]
Ottoboni L.M.M. [1 ]
机构
[1] Ctr. Biol. Mole. Engenharia Genet., Universidade Estadual de Campinas, Campinas SP
关键词
16S rDNA sequence analysis; Acidithiobacillus ferrooxidans; Acidithiobacillus thiooxidans; DNA-DNA homology; Genetic diversity; Rep-PCR; Ribotyping;
D O I
10.1023/A:1012247325537
中图分类号
学科分类号
摘要
Nineteen strains of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, including 12 strains isolated from coal, copper, gold and uranium mines in Brazil, strains isolated from similar sources in other countries and the type strains of the two species were characterized together with the type strain of A. caldus by using a combination of molecular systematic methods, namely ribotyping, BOX- and ERIC-PCR and DNA-DNA hybridization assays. Data derived from the molecular fingerprinting analyses showed that the tested strains encompassed a high degree of genetic variability. Two of the Brazilian A. ferrooxidans organisms (strains SSP and PCE) isolated from acid coal mine waste and uranium mine effluent, respectively, and A. thiooxidans strain DAMS, isolated from uranium mine effluent, were the most genetically divergent organisms. The DNA-DNA hybridization data did not support the allocation of Acidithiobacillus strain SSP to the A. ferrooxidans genomic species, as it shared only just over 40% DNA relatedness with the type strain of the species. Acidithiobacillus strain SSP was not clearly related to A. ferrooxidans in the 16S rDNA tree.
引用
收藏
页码:65 / 75
页数:10
相关论文
共 39 条
[31]  
Selenska-Pobell S., Otto A., Kutschke S., Identification and discrimination of thiobacilli using ARDREA, RAPD and REPAPD, J. Appl. Microbiol., 84, pp. 1085-1091, (1998)
[32]  
Sokal R.R., Michener C.D., A statistical method far evaluating systematic relationships, Kans Univ. Sci. Bull., 38, pp. 1409-1438, (1958)
[33]  
Temple K.L., Colmer A.R., An autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans, J. Bacteriol., 62, pp. 605-611, (1951)
[34]  
Thompson J.D., Higgins D.G., Gibson T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice, Nucleic Acids Res., 22, pp. 4673-4680, (1994)
[35]  
Tuovinen O.H., Kelly D.P., Studies on the growth of Thiobacillus ferrooxidans. I. Use of membrane filters and ferrous iron agar to determine viable number and comparison with <sup>14</sup>CO<sub>2</sub> fixation and iron oxidation as measures of growth, Arch. Microbiol., 88, pp. 285-298, (1973)
[36]  
Versalovic J., Koeuth T., Lupski J.R., Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes, Nucleic Acids Res., 19, pp. 6823-6831, (1991)
[37]  
Vinuesa P., Rademaker J.L., De Bruijn F.J., Werner D., Genotypic characterization of Bradyrhizobium strains nodulating endemic woody legumes of the Canary Islands by PCR-restriction fragment length polymorphism analysis of genes encoding 16S rRNA (16S rDNA) and 16S-23S spacers, repetitive extragenic palindromic PCR genomic fingerprinting, and partial 16S rDNA sequencing, Appl. Environ. Microbiol., 64, pp. 2096-2104, (1998)
[38]  
Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevski M.I., Moore L.H., Moore W.E.C., Murray R.G.E., Stackebrandt E., Starr M.P., Truper H.G., Report of the ad hoc committee on reconciliation of appoaches to bacterial systematics, Int. J. Syst. Bacteriol., 37, pp. 463-464, (1987)
[39]  
Zarko-Postawka M., Hunderuk M., Mordarski M., Zakrzewski-Czerwinska J., Organization and nucleotide sequence analysis of the ribosomal gene set (rmB) from Streptomyces lividans, Gene, 185, pp. 231-237, (1997)