A regularity property for Schrödinger equations on bounded domains

被引:0
|
作者
Jean-Pierre Puel
机构
[1] Ikerbasque & Basque Center for Applied Mathematics,Laboratoire de Mathématiques de Versailles
[2] Université de Versailles St Quentin,undefined
来源
关键词
Schrödinger equations; Regularity; Multiplier method; 35B65; 35Q41;
D O I
暂无
中图分类号
学科分类号
摘要
We give a regularity result for the free Schrödinger equations set in a bounded domain of ℝN which extends the 1-dimensional result proved in Beauchard and Laurent (J. Math. Pures Appl. 94(5):520–554, 2010) with different arguments. We also give other equivalent results, for example, for the free Schrödinger equation, if the initial value is in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{1}_{0}(\varOmega)$\end{document} and the right hand side f can be decomposed in f=g+h where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$g\in L^{1}(0,T;H^{1}_{0}(\varOmega))$\end{document} and h∈L2(0,T;L2(Ω)), Δh=0 and h/Γ∈L2(0,T;L2(Γ)), then the solution is in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C([0,T];H^{1}_{0}(\varOmega))$\end{document}. This obviously contains the case f∈L2(0,T;H1(Ω)). This result is essential for controllability purposes in the 1-dimensional case as shown in Beauchard and Laurent (J. Math. Pures Appl. 94(5):520–554, 2010) and might be interesting for the N-dimensional case where the controllability problem is open.
引用
收藏
页码:183 / 192
页数:9
相关论文
共 50 条