Tapered photonic crystal fiber for supercontinuum generation in telecommunication windows

被引:1
作者
Xu Y. [1 ]
Chen Z. [2 ]
Li H. [1 ]
Wei Y. [3 ]
机构
[1] Department of Electronic Engineering, Dongguan University of Technology, Dongguan
[2] School of Information, Central University of Finance and Economics, Beijing
[3] Tianjin Mobile Communications Corporation, Tianjin
来源
Frontiers of Optoelectronics in China | 2009年 / 2卷 / 3期
关键词
dispersion; fiber optics; photonic crystal fiber; supercontinuum;
D O I
10.1007/s12200-009-0013-0
中图分类号
学科分类号
摘要
We numerically studied supercontinuum generation in a tapered photonic crystal fiber with flattened dispersion properties. The fiber was weakly tapered to have normal dispersion at wavelengths around 1. 55 μm after a certain distance. We pumped 4 ps pulses with low peak power and found that flatly broadened, wideband supercontinuum was generated in telecommunication windows. Furthermore, we also demonstrated the effects of tapered length and pulse width of the pump pulse on supercontinuum generation. © 2009 Higher Education Press and Springer-Verlag GmbH.
引用
收藏
页码:293 / 298
页数:5
相关论文
共 20 条
[1]  
Ravi Kanth Kumar V.V., George A.K., Reeves W.H., Knight J.C., Russell P.S.J., Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation, Optics Express, 10, 25, pp. 1520-1525, (2002)
[2]  
Yu Y.Q., Ruan S.C., Du C.L., Yao J.Q., Spectral broadening in the 1.3 μm region using a 1.8-m-long photonic crystal fiber by femtosecond pulses from an optical parametric amplifier, Acta Photonica Sinica, 34, 4, pp. 481-484, (2005)
[3]  
Xu Y.Z., Ren X.M., Wang Z.N., Zhang X., Huang Y.Q., Flat supercontinuum generation at 1550 nm in a dispersion-flattened microstructure fibre using picosecond pulse, Chinese Physics Letters, 24, 3, pp. 734-737, (2007)
[4]  
Hu M.L., Wang Q.Y., Li Y.F., Wang Z., Zhang Z.G., Chai L., Zhang R.B., Experimental analysis of the dependence factor during supercontinuum generation in photonic crystal fiber, Acta Physica Sinica, 53, 12, pp. 4243-4247, (2004)
[5]  
Yu Y.Q., Ruan S.C., Du C.L., Yao J.Q., Supercontinuum generation using a polarization-maintaining photonic crystal fibre by a regeneratively amplified Ti:sapphire laser, Chinese Physics Letters, 22, 2, pp. 384-387, (2005)
[6]  
Kudlinski A., George A.K., Knight J.C., Travers J.C., Rulkov A.B., Popov S.V., Taylor J.R., Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation, Optics Express, 14, 12, pp. 5715-5722, (2006)
[7]  
Ohara T., Takara H., Yamamoto T., Masuda H., Morioka T., Abe M., Takahashi H., Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source, Journal of Lightwave Technology, 24, 6, pp. 2311-2317, (2006)
[8]  
Xu Y.Z., Ren X.M., Wang Z.N., Zhang X., Huang Y.Q., Flatly broadened supercontinuum generation at 10 Gbit/s using dispersion-flattened photonic crystal fibre with small normal dispersion, Electronics Letters, 43, 2, pp. 87-88, (2007)
[9]  
Yusoff Z., Petropoulos P., Furusawa K., Monro T.M., Richardson D.J., A 36-channel × 10-GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber, IEEE Photonics Technology Letters, 15, 12, pp. 1689-1691, (2003)
[10]  
Nakasyotani T., Toda H., Kuri T., Kitayama K., Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source, Journal of Lightwave Technology, 24, 1, pp. 404-410, (2006)