Comonotone Adaptive Interpolating Splines

被引:0
|
作者
Peeter Oja
机构
[1] University of Tartu,Department of Applied Mathematics
来源
BIT Numerical Mathematics | 2002年 / 42卷
关键词
Rational spline; adaptive interpolation; monotonicity preserving;
D O I
暂无
中图分类号
学科分类号
摘要
For any given data we propose the construction of an interpolating spline of class C1, which is either a quadratic polynomial or a linear/linear rational function between the knots, and preserves the monotonicity of the data on the sections of rational intervals. We prove the uniqueness and existence of this spline. Numerical tests show good approximation properties and flexibility due to the non-coincidence of the given data arguments and the spline knots which can be chosen freely.
引用
收藏
页码:842 / 855
页数:13
相关论文
共 50 条
  • [1] Comonotone adaptive interpolating splines
    Oja, P
    BIT, 2002, 42 (04): : 842 - 855
  • [2] Adaptive quasi-interpolating quartic splines
    Martin Hering-Bertram
    Gerd Reis
    Frank Zeilfelder
    Computing, 2009, 86 : 89 - 100
  • [3] Convergence of Comonotone Histopolating Splines
    Hallik, Helle
    Oja, Peeter
    MATHEMATICAL MODELLING AND ANALYSIS, 2015, 20 (01) : 124 - 138
  • [4] Adaptive quasi-interpolating quartic splines
    Hering-Bertram, Martin
    Reis, Gerd
    Zeilfelder, Frank
    COMPUTING, 2009, 86 (2-3) : 89 - 100
  • [5] Geodesic interpolating splines
    Camion, V
    Younes, L
    ENERGY MINIMIZATION METHODS IN COMPUTER VISION AND PATTERN RECOGNITION, 2001, 2134 : 513 - 527
  • [6] ON MIXED INTERPOLATING SPLINES
    HUANG, DR
    SHA, Z
    CHINESE ANNALS OF MATHEMATICS SERIES B, 1982, 3 (02): : 233 - 240
  • [7] Convergence of Quartic Interpolating Splines
    Yu. S. Volkov
    Proceedings of the Steklov Institute of Mathematics, 2020, 308 : 196 - 202
  • [8] Approximation by interpolating variational splines
    Kouibia, A.
    Pasadas, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) : 342 - 349
  • [9] ON INTERPOLATING MULTIVARIATE RATIONAL SPLINES
    WANG, RH
    TAN, JQ
    APPLIED NUMERICAL MATHEMATICS, 1993, 12 (04) : 357 - 372
  • [10] INTERPOLATING SPLINES AS LIMITS OF POLYNOMIALS
    SCHOENBERG, IJ
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1983, 52-3 (JUL) : 617 - 628