A semidefinite relaxation method for second-order cone tensor eigenvalue complementarity problems

被引:0
作者
Lulu Cheng
Xinzhen Zhang
Guyan Ni
机构
[1] Tianjin University,School of Mathematics
[2] National University of Defense Technology,Department of Mathematics
来源
Journal of Global Optimization | 2021年 / 79卷
关键词
Second-order cone; Tensor eigenvalue complementarity; Semidefinite relaxation; 15A18; 15A69; 90C22; 90C33;
D O I
暂无
中图分类号
学科分类号
摘要
This paper discusses second-order cone tensor eigenvalue complementarity problem. We reformulate second-order cone tensor eigenvalue complementarity problem as two constrained polynomial optimizations. For these two reformulated optimizations, Lasserre-type semidefinite relaxation methods are proposed to compute all second-order cone tensor complementarity eigenpairs. The proposed algorithms terminate when there are finitely many second-order cone complementarity eigenvalues. Numerical examples are reported to show the efficiency of the proposed algorithms.
引用
收藏
页码:715 / 732
页数:17
相关论文
共 50 条
  • [41] An unconstrained smooth minimization reformulation of the second-order cone complementarity problem
    Chen, JS
    Tseng, P
    MATHEMATICAL PROGRAMMING, 2005, 104 (2-3) : 293 - 327
  • [42] A proximal point algorithm for the monotone second-order cone complementarity problem
    Jia Wu
    Jein-Shan Chen
    Computational Optimization and Applications, 2012, 51 : 1037 - 1063
  • [43] Tensor Z-eigenvalue complementarity problems
    Zeng, Meilan
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 78 (02) : 559 - 573
  • [44] The modulus-based matrix splitting iteration methods for second-order cone linear complementarity problems
    Yi-Fen Ke
    Chang-Feng Ma
    Huai Zhang
    Numerical Algorithms, 2018, 79 : 1283 - 1303
  • [45] Tensor Z-eigenvalue complementarity problems
    Meilan Zeng
    Computational Optimization and Applications, 2021, 78 : 559 - 573
  • [46] The modulus-based matrix splitting iteration methods for second-order cone linear complementarity problems
    Ke, Yi-Fen
    Ma, Chang-Feng
    Zhang, Huai
    NUMERICAL ALGORITHMS, 2018, 79 (04) : 1283 - 1303
  • [47] Robust Optimization for Models with Uncertain Second-Order Cone and Semidefinite Programming Constraints
    Zhen, Jianzhe
    de Ruiter, Frans J. C. T.
    Roos, Ernst
    den Hertog, Dick
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (01) : 196 - 210
  • [48] The rate of convergence of proximal method of multipliers for second-order cone optimization problems
    Chu, Li
    Wang, Bo
    Zhang, Liwei
    Zhang, Hongwei
    OPTIMIZATION LETTERS, 2021, 15 (02) : 441 - 457
  • [49] The rate of convergence of proximal method of multipliers for second-order cone optimization problems
    Li Chu
    Bo Wang
    Liwei Zhang
    Hongwei Zhang
    Optimization Letters, 2021, 15 : 441 - 457
  • [50] A second order cone complementarity approach for the numerical solution of elastoplasticity problems
    Zhang, L. L.
    Li, J. Y.
    Zhang, H. W.
    Pan, S. H.
    COMPUTATIONAL MECHANICS, 2013, 51 (01) : 1 - 18