A semidefinite relaxation method for second-order cone tensor eigenvalue complementarity problems

被引:0
作者
Lulu Cheng
Xinzhen Zhang
Guyan Ni
机构
[1] Tianjin University,School of Mathematics
[2] National University of Defense Technology,Department of Mathematics
来源
Journal of Global Optimization | 2021年 / 79卷
关键词
Second-order cone; Tensor eigenvalue complementarity; Semidefinite relaxation; 15A18; 15A69; 90C22; 90C33;
D O I
暂无
中图分类号
学科分类号
摘要
This paper discusses second-order cone tensor eigenvalue complementarity problem. We reformulate second-order cone tensor eigenvalue complementarity problem as two constrained polynomial optimizations. For these two reformulated optimizations, Lasserre-type semidefinite relaxation methods are proposed to compute all second-order cone tensor complementarity eigenpairs. The proposed algorithms terminate when there are finitely many second-order cone complementarity eigenvalues. Numerical examples are reported to show the efficiency of the proposed algorithms.
引用
收藏
页码:715 / 732
页数:17
相关论文
共 50 条
  • [1] A semidefinite relaxation method for second-order cone tensor eigenvalue complementarity problems
    Cheng, Lulu
    Zhang, Xinzhen
    Ni, Guyan
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 79 (03) : 715 - 732
  • [2] A semidefinite relaxation method for second-order cone polynomial complementarity problems
    Cheng, Lulu
    Zhang, Xinzhen
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 75 (03) : 629 - 647
  • [3] A semidefinite relaxation method for second-order cone polynomial complementarity problems
    Lulu Cheng
    Xinzhen Zhang
    Computational Optimization and Applications, 2020, 75 : 629 - 647
  • [4] SEMIDEFINITE RELAXATION METHOD FOR POLYNOMIAL OPTIMIZATION WITH SECOND-ORDER CONE COMPLEMENTARITY CONSTRAINTS
    Zhu, Lin
    Zhang, Xinzhen
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2022, 18 (03) : 1505 - 1517
  • [5] A Class of Second-Order Cone Eigenvalue Complementarity Problems for Higher-Order Tensors
    Hou J.-J.
    Ling C.
    He H.-J.
    He, Hong-Jin (hehjmath@hdu.edu.cn), 1600, Springer Science and Business Media Deutschland GmbH (05): : 45 - 64
  • [6] A power penalty method for second-order cone linear complementarity problems
    Hao, Zijun
    Wan, Zhongping
    Chi, Xiaoni
    OPERATIONS RESEARCH LETTERS, 2015, 43 (02) : 137 - 142
  • [7] A power penalty method for second-order cone nonlinear complementarity problems
    Hao, Zijun
    Wan, Zhongping
    Chi, Xiaoni
    Chen, Jiawei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 290 : 136 - 149
  • [8] A semidefinite method for tensor complementarity problems
    Zhao, Xin
    Fan, Jinyan
    OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (04) : 758 - 769
  • [9] A combined smoothing and regularization method for monotone second-order cone complementarity problems
    Hayashi, S
    Yamashita, N
    Fukushima, M
    SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (02) : 593 - 615
  • [10] AN EFFICIENT ALGORITHM FOR SECOND-ORDER CONE LINEAR COMPLEMENTARITY PROBLEMS
    Zhang, Lei-Hong
    Yang, Wei Hong
    MATHEMATICS OF COMPUTATION, 2014, 83 (288) : 1701 - 1726