A Note on the Krylov Solvability of Compact Normal Operators on Hilbert Space

被引:0
作者
Noè Angelo Caruso
机构
[1] Silesian University in Opava,Mathematical Institute in Opava
来源
Complex Analysis and Operator Theory | 2023年 / 17卷
关键词
Inverse linear problems; Infinite-dimensional Hilbert space; Ill-posed problems; Compact operators; Bounded linear operators; Normal operators; Krylov subspaces; Cyclic operators; Krylov solution; Krylov solvability;
D O I
暂无
中图分类号
学科分类号
摘要
We analyse the Krylov solvability of inverse linear problems on Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} where the underlying operator is compact and normal. Krylov solvability is an important feature of inverse linear problems that has profound implications in theoretical and applied numerical analysis as it is critical to understand the utility of Krylov based methods for solving inverse problems. Our results explicitly describe for the first time the Krylov subspace for such operators given any datum vector g∈H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\in \mathcal {H}$$\end{document}, as well as prove that all inverse linear problems are Krylov solvable provided that g is in the range of such an operator. We therefore expand our knowledge of the class of Krylov solvable operators to include the normal compact operators. We close the study by proving an isomorphism between the closed Krylov subspace for a general bounded normal operator and an L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-measure space based on the scalar spectral measure.
引用
收藏
相关论文
共 28 条
  • [1] Campbell S(1996)Convergence estimates for solution of integral equations with GMRES. J. Integr. Equ. Appl. 8 19-34
  • [2] Ipsen I(1996)GMRES and the minimal polynomial BIT Numer. Math. 36 664-675
  • [3] Kelly C(2021)Krylov Solvability of Unbounded Inverse Linear Problems Integr. Equ. Oper. Theory 93 Paper No. 1-68
  • [4] Meyer C(2022)Convergence of the conjugate gradient method with unbounded operators Oper. Matrices 16 35-29
  • [5] Xue Z(2023)Krylov solvability under perturbations of abstract inverse linear problems J. Appl. Anal. 29 3-164
  • [6] Campbell SL(2019)On Krylov solutions to infinite-dimensional inverse linear problems Calcolo 56 32-851
  • [7] Ipsen ICF(2019)Convergence analysis of LSQR for compact operator equations Linear Algebra Appl. 583 146-25
  • [8] Kelley CT(1952)Convergence of a method of solving linear problems Proc. Am. Math. Soc. 3 839-57
  • [9] Meyer CD(1984)Iterative methods for solving linear ill-posed problems under precise information. I Izv. Akad. Nauk SSSR Tekhn. Kibernet. 203 13-3373
  • [10] Caruso NA(1984)Iterative methods for solving linear ill-posed problems under precise information. II Eng. Cybern. 22 50-1550