On variants of compatible mappings in fuzzy metric spaces and related fixed point theorems

被引:0
作者
Vishal Gupta
Balbir Singh
Sanjay Kumar
Adesh Kumar Tripathi
机构
[1] Maharishi Markandeshwar (Deemed to be University),
[2] B. M. Institute of Engineering and Technology,undefined
[3] D.C.R,undefined
[4] University of Science and Technology,undefined
来源
The Journal of Analysis | 2019年 / 27卷
关键词
Fuzzy metric space; Compatible mappings; Compatible mappings of type (R); Compatible mappings of type (K); Compatible mappings of type (E); 47H10; 54H25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we use the notion of compatible mappings of type R, K and E in the setting of a Fuzzy metric space and then prove the common fixed point theorems for compatible mappings of type R, K and E using implicit relations in fuzzy metric spaces.
引用
收藏
页码:197 / 208
页数:11
相关论文
共 36 条
[1]  
Deng V(1982)Fuzzy pseudo-metric space Journal of Mathematical Analysis and Applications 86 74-95
[2]  
Erceg MA(1979)Metric spaces in fuzzy set theory Journal of Mathematical Analysis and Applications 69 205-230
[3]  
George A(1994)on some results in fuzzy metric space Fuzzy Sets and Systems 64 395-399
[4]  
Veeramani P(1988)Fixed points in fuzzy metric spaces Fuzzy Sets and Systems 27 385-3879
[5]  
Grabiec M(2014)Common fixed points theorem for compatible of type (K) in metric space International Journal of Mathematical Sciences and Engineering Applications 89 383-391
[6]  
Jha K(1976)Commuting mappings and fixed points The American Mathematical Monthly 83 261-263
[7]  
Popa V(1996)Common fixed points for non-continuous non-self maps on non-metric spaces Far East Journal of Mathematical Sciences 4 199-212
[8]  
Manandhar KB(2015)Common fixed points for compatible mappings of types in multiplicative metric spaces International Journal of Mathematical Analysis 9 1755-1767
[9]  
Jungck G(1984)On fuzzy metric spaces Fuzzy Sets and Systems 12 215-229
[10]  
Jungck G(1975)Fuzzy metric and statistical metric spaces Kybernetika 11 336-344