The Dirichlet problem for semilinear elliptic equations in an infinite sector

被引:0
|
作者
A. El Hajj
H. Ibrahim
机构
[1] Université de Technologie de Compiègne,Mathematics Department, Faculty of Sciences (I)
[2] LMAC,undefined
[3] Lebanese University,undefined
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2019年 / 198卷
关键词
Semilinear elliptic equations; Asymptotic behavior; Sliding method; 35J61; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Dirichlet problem for a semilinear elliptic equation in an unbounded sectorial domain Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} of the two-dimensional space. The problem is supplemented with a limiting behavior related to a prescribed root z of the nonlinearity of the equation. The one-dimensional setting of the problem has a unique solution Vz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{z}$$\end{document}, and the goal of the present paper is to construct a two-dimensional positive and bounded solution u approaching Vz(d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{z}(d)$$\end{document} when d=d(x,∂Ω)→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d = d(x,\partial \Omega )\rightarrow \infty $$\end{document}. This is established using sub- and supersolutions method and employing a sliding argument.
引用
收藏
页码:1551 / 1561
页数:10
相关论文
共 50 条