Privileged Coordinates and Nilpotent Approximation of Carnot Manifolds, I. General Results

被引:0
作者
Woocheol Choi
Raphaël Ponge
机构
[1] Incheon National University,Department of Mathematics Education
[2] Seoul National University,Department of Mathematical Sciences
来源
Journal of Dynamical and Control Systems | 2019年 / 25卷
关键词
Carnot manifolds; Privileged coordinates; Nilpotent approximation; 53C17; 43A85; 22E25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we attempt to give a systematic account on privileged coordinates and nilpotent approximation of Carnot manifolds. By a Carnot manifold, it is meant a manifold with a distinguished filtration of subbundles of the tangent bundle which is compatible with the Lie bracket of vector fields. This paper lies down the background for its sequel (Choi and Ponge 2017) by clarifying a few points on privileged coordinates and the nilpotent approximation of Carnot manifolds. In particular, we give a description of all the systems of privileged coordinates at a given point. We also give an algebraic characterization of all nilpotent groups that appear as the nilpotent approximation at a given point. In fact, given a nilpotent group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G$\end{document} satisfying this algebraic characterization, we exhibit all the changes of variables that transform a given system of privileged coordinates into another system of privileged coordinates in which the nilpotent approximation is given by G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G$\end{document}.
引用
收藏
页码:109 / 157
页数:48
相关论文
共 43 条
  • [1] Agrachev A(2003)Nonholonomic tangent spaces: intrinsic construction and rigid dimensions Electron Res Announc Amer Math Soc 9 111-120
  • [2] Marigo A(2005)Rigid Carnot algebras: a classification J Dyn Control Syst 11 449-494
  • [3] Agrachev A(1987)Filtrations of a Lie algebra of vector fields and nilpotent approximations of control systems Dokl Akad Nauk SSSR 285 777-781
  • [4] Marigo A(2000)On essential conformal groups and a conformal invariant J Geom 68 10-15
  • [5] Agrachev AA(1990)Graded approximations and controllability along a trajectory SIAM J Control Optim 28 903-924
  • [6] Sarychev AV(1910)Les systèmes de Pfaff à cinq variables et les équations aux derivées partielles du second ordre Ann Sci École Norm Sup 27 263-355
  • [7] Banyaga A(1995)The local index formula in noncommutative geometry Geom Funct Anal 5 174-243
  • [8] Bianchini RM(1989)A pseudodifferential calculus associated with 3-step nilpotent groups Comm Partial Differ Equ 14 129-171
  • [9] Stefani C(2003)Measures of transverse paths in sub-Riemannian geometry J Anal Math 91 231-246
  • [10] Cartan E(1979)Lipschitz classes and Poisson integrals on stratified groups Stud Math 66 37-55