共 29 条
[1]
Ali U., Sohail M., Abdullah F.A., An efficient numerical scheme for variable-order fractional sub-diffusion equation, Symmetry, 12, 9, (2020)
[2]
Ali U., Sohail M., Usman M., Abdullah F.A., Khan I., Nisar K.S., Fourth-order difference approximation for time-fractional modified sub-diffusion equation, Symmetry, 12, 5, (2020)
[3]
Ali U., Iqbal A., Sohail M., Abdullah F.A., Khan Z., Compact implicit difference approximation for time-fractional diffusion-wave equation, Alex. Eng. J., 61, 5, pp. 4119-4126, (2022)
[4]
Birajdar G.A., Numerical solution of time fractional Navier–Stokes equation by discrete Adomian decomposition method, Nonlinear Eng., 3, 1, pp. 21-26, (2014)
[5]
Dehghan M., Heris J.M., Saadatmandi A., Application of semi-analytic methods for the Fitzhugh–Nagumo equation, which models the transmission of nerve impulses, Math. Methods Appl. Sci., 33, 11, pp. 1384-1398, (2010)
[6]
Ganji Z.Z., Ganji D.D., Ganji A.D., Rostamian M., Analytical solution of time-fractional Navier–Stokes equation in polar coordinate by homotopy perturbation method, Numer. Methods Partial Differ. Equ., 26, 1, pp. 117-124, (2010)
[7]
Gholinia M., Hosseinzadeh K., Ganji D.D., Investigation of different base fluids suspend by CNTs hybrid nanoparticle over a vertical circular cylinder with sinusoidal radius, Case Stud. Therm. Eng., 21, pp. 1-14, (2020)
[8]
Gordon P., Nonsymmetric difference equations, J. Soc. Ind. Appl. Math., 13, 3, pp. 667-673, (1965)
[9]
Fitzhugh R., Impulse and physiological states in models of nerve membrane, Biophys. J., 1, 6, pp. 445-466, (1961)
[10]
He J.H., Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178, pp. 257-262, (1999)