Phase transitions in porous media

被引:0
作者
Chiara Gavioli
Pavel Krejčí
机构
[1] TU Wien,Institute of Analysis and Scientific Computing
[2] Czech Technical University,Faculty of Civil Engineering
来源
Nonlinear Differential Equations and Applications NoDEA | 2022年 / 29卷
关键词
Porous media; Phase transitions; Hysteresis; 74F10; 76S05; 47J40; 35A01;
D O I
暂无
中图分类号
学科分类号
摘要
The full quasistatic thermomechanical system of PDEs, describing water diffusion with the possibility of freezing and melting in a visco-elasto-plastic porous solid, is studied in detail under the hypothesis that the pressure-saturation hysteresis relation is given in terms of the Preisach hysteresis operator. The resulting system of balance equations for mass, momentum, and energy coupled with the phase dynamics equation is shown to admit a global solution under general assumptions on the data.
引用
收藏
相关论文
共 19 条
[1]  
Adams RA(1988)Anisotropic Sobolev inequalities Časopis pro pěstování matematiky 113 267-279
[2]  
Albers B(2016)Unsaturated porous media flow with thermomechanical interaction Math. Meth. Appl. Sci. 39 2220-2238
[3]  
Krejčí P(2016)Solvability of an unsaturated porous media flow problem with thermomechanical interaction SIAM J. Math. Anal. 48 4175-4201
[4]  
Detmann B(1986)Embeddings of anisotropic Sobolev spaces Arch. Ration. Mech. Anal. 94 245-252
[5]  
Krejčí P(2021)On a viscoelastoplastic porous medium problem with nonlinear interaction SIAM J. Math. Anal. 53 1191-1213
[6]  
Rocca E(1989)Hysteresis operators—a new approach to evolution differential inequalities Comment. Math. Univ. Carolinae 33 525-536
[7]  
Edmunds DE(2013)The Preisach hysteresis model: Error bounds for numerical identification and inversion Discrete Cont. Dyn. Syst. Ser. S 6 101-119
[8]  
Edmunds RM(2011)Regularity and uniqueness in quasilinear parabolic systems Appl. Math. 56 341-370
[9]  
Gavioli C(2017)Unsaturated deformable porous media flow with thermal phase transition Math. Models Methods Appl. Sci. 27 2675-2710
[10]  
Krejčí P(2004)Diffusion in poro-plastic media Math. Methods Appl. Sci. 27 2131-2151