Finite-element methods for junction problems for coaxial and radial waveguides

被引:0
作者
A. L. Delitsyn
机构
[1] Moscow State University,Department of Physics
来源
Moscow University Physics Bulletin | 2016年 / 71卷
关键词
Maxwell equations; junctions of coaxial and radial waveguides; the method of mixed finite elements;
D O I
暂无
中图分类号
学科分类号
摘要
We apply the method of mixed finite elements to the junction problem for coaxial and radial waveguides. The problem is reduced to an internal boundary-value problem with nonlocal boundary-value conditions. In the low-frequency range, we compare the results of the finite-element method with the Otto relationship.
引用
收藏
页码:368 / 374
页数:6
相关论文
共 50 条
[31]   Implementation of a First-Order ABC in Mixed Finite-Element Time-Domain Formulations Using Equivalent Currents [J].
Akbarzadeh-Sharbaf, Ali ;
Giannacopoulos, Dennis D. .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2013, 23 (06) :276-278
[33]   Rubrics for Charge Conserving Current Mapping in Finite Element Electromagnetic Particle in Cell Methods [J].
Crawford, Zane D. ;
O'Connor, Scott ;
Luginsland, John ;
Shanker, B. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2021, 49 (11) :3719-3732
[34]   Global superconvergence of the mixed finite element methods for 2-D Maxwell equations [J].
Lin, JF ;
Lin, Q .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2003, 21 (05) :637-646
[35]   ENERGY STABLE TIME DOMAIN FINITE ELEMENT METHODS FOR NONLINEAR MODELS IN OPTICS AND PHOTONICS [J].
Anees, Asad ;
Angermann, Lutz .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (04) :511-541
[36]   GLOBAL SUPERCONVERGENCE OF THE MIXED FINITE ELEMENT METHODS FOR 2-D MAXWELL EQUATIONS [J].
Jiafu Lin Institute of Systems Sciences Chinese Academy of Sciences Beijing ChinaQun LinLSEC ICMSEC Academy of Mathematics and System Sciences Chinese Academy of SciencesBeijing China .
Journal of Computational Mathematics, 2003, (05) :637-646
[37]   A UNIFIED ANALYSIS OF QUASI-OPTIMAL CONVERGENCE FOR ADAPTIVE MIXED FINITE ELEMENT METHODS [J].
Hu, Jun ;
Yu, Guozhu .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (01) :296-316
[38]   Superconvergence of mixed finite element semi-discretizations of two time-dependent problems [J].
Brandts J.H. .
Applications of Mathematics, 1999, 44 (1) :43-53
[39]   ON THE ERROR ESTIMATION OF THE FINITE ELEMENT METHOD FOR THE BOUNDARY VALUE PROBLEMS WITH SINGULARITY IN THE LEBESGUE WEIGHTED SPACE [J].
Rukavishnikov, V. A. ;
Rukavishnikova, H. I. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2013, 34 (12) :1328-1347
[40]   MULTISCALE FINITE ELEMENT MODELING OF NONLINEAR MAGNETOQUASISTATIC PROBLEMS USING MAGNETIC INDUCTION CONFORMING FORMULATIONS [J].
Niyonzima, I. ;
Sabariego, R. V. ;
Dular, P. ;
Jacques, K. ;
Geuzaine, C. .
MULTISCALE MODELING & SIMULATION, 2018, 16 (01) :300-326