Empirical likelihood bivariate nonparametric maximum likelihood estimator with right censored data

被引:0
作者
Jian-Jian Ren
Tonya Riddlesworth
机构
[1] University of Maryland,Department of Mathematics
[2] Tennessee Technological University,Department of Mathematics
来源
Annals of the Institute of Statistical Mathematics | 2014年 / 66卷
关键词
Bivariate data; Bivariate right censored data; Doubly censored data; Empirical likelihood; Maximum likelihood estimator; Right censored data;
D O I
暂无
中图分类号
学科分类号
摘要
This article considers the estimation for bivariate distribution function (d.f.) F0(t,z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_0(t, z)$$\end{document} of survival time T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document} and covariate variable Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z$$\end{document} based on bivariate data where T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document} is subject to right censoring. We derive the empirical likelihood-based bivariate nonparametric maximum likelihood estimator F^n(t,z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_n(t,z)$$\end{document} for F0(t,z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_0(t,z)$$\end{document}, which has an explicit expression and is unique in the sense of empirical likelihood. Other nice features of F^n(t,z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_n(t,z)$$\end{document} include that it has only nonnegative probability masses, thus it is monotone in bivariate sense. We show that under F^n(t,z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_n(t,z)$$\end{document}, the conditional d.f. of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document} given Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z$$\end{document} is of the same form as the Kaplan–Meier estimator for the univariate case, and that the marginal d.f. F^n(∞,z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_n(\infty ,z)$$\end{document} coincides with the empirical d.f. of the covariate sample. We also show that when there is no censoring, F^n(t,z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_n(t,z)$$\end{document} coincides with the bivariate empirical d.f. For discrete covariate Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z$$\end{document}, the strong consistency and weak convergence of F^n(t,z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{F}_n(t,z)$$\end{document} are established. Some simulation results are presented.
引用
收藏
页码:913 / 930
页数:17
相关论文
共 22 条
[1]  
Akritas M. A.(1994)Nearest neighbor estimation of a bivariate distribution under random censoring The Annals of Statistics 22 1299-1327
[2]  
Chang M. N.(1987)Strong consistency of a nonparametric estimator of the survival function with doubly censored data The Annals of Statistics 15 1536-1547
[3]  
Yang G. L.(1988)Kaplan-Meier estimate on the plane The Annals of Statistics 16 1475-1489
[4]  
Dabrowska D. M.(1989)Kaplan-Meier estimate on the plane: weak convergence, LIL, and the bootstrap Journal of Multivariate Analysis 29 308-325
[5]  
Dabrowska D. M.(1977)Maximum likelihood from incomplete data via the EM-algorithm Journal of the Royal Statistical Society, Series B 39 1-38
[6]  
Dempster A. P.(1983)Large sample behavior of the product-limit estimator on the whole line The Annals of Statistics 11 49-58
[7]  
Laird N. M.(1993)A simple nonparametric estimator of the bivariate survival function under univariate censoring Biometrika 80 573-581
[8]  
Rubin D. B.(1996)Self-consistent and maximum likelihood estimation for doubly censored data The Annals of Statistics 24 1740-1764
[9]  
Gill R.(1988)Empirical likelihood ratio confidence intervals for a single functional Biometrika 75 237-249
[10]  
Lin D. Y.(1997)Regression M-estimators for doubly censored data The Annals of Statistics 25 2638-2664