Nilpotency of Alternative and Jordan Algebras

被引:0
作者
A. V. Popov
机构
[1] Ulyanovsk State University,
来源
Siberian Mathematical Journal | 2021年 / 62卷
关键词
Jordan algebras; alternative algebras; almost nilpotent varieties; Nagata–Higman Theorem; Engel identity; standard Jordan identity; 512.554.5:7;
D O I
暂无
中图分类号
学科分类号
摘要
We study the polynomial identities of alternative and Jordan algebras which imply the nilpotency of the algebras. In the case of a field of characteristic 0 we describe all these systems of identities as well as all almost nilpotent varieties of alternative and Jordan algebras. In particular, we establish a connection between the Engel identity for the Lie algebras and the standard identity for the Jordan algebras.
引用
收藏
页码:148 / 158
页数:10
相关论文
共 20 条
[1]  
Dubnov YS(1943)On decreasing the degree of affinor polynomials Dokl. Akad. Nauk SSSR 41 99-102
[2]  
Ivanov VK(1952)On the nilpotency of nil algebras J. Math. Soc. Japan 4 296-301
[3]  
Nagata M(1956)On a conjecture of Nagata Proc. Cambridge Philos. Soc. 52 1-4
[4]  
Higman G(1973)On varieties of associative rings. II Algebra and Logic 12 381-393
[5]  
L’vov IV(2015)On almost nilpotent varieties in the class of commutative metabelian algebras Vestn. SamGU. Estestvennonauchn. Ser. 3(125) 21-28
[6]  
Mishchenko SP(2017)Sturmian words and uncountable set of almost nilpotent varieties of quadratic growth Moscow Univ. Math. Bull. 72 251-254
[7]  
Shulezhko OV(1988)Engelian Lie algebras Sib. Math. J. 29 777-781
[8]  
Mishchenko SP(1989)Solvable alternative algebras Sib. Math. J. 30 1019-1022
[9]  
Panov NP(1985)Solvable Jordan algebras Comm. Algebra 13 1389-1414
[10]  
Zelmanov EI(1982)Varieties of algebras that are solvable of index 2 Math. USSR-Sb. 43 159-180