Global stabilization of inherently non-linear systems using continuously differentiable controllers

被引:0
|
作者
Weisong Tian
Chuanlin Zhang
Chunjiang Qian
Shihua Li
机构
[1] University of Texas at San Antonio,Department of Electrical and Computer Engineering
[2] Southeast University,School of Automation
来源
Nonlinear Dynamics | 2014年 / 77卷
关键词
Non-linear system; Homogeneous system; Smooth control; Generalized homogeneous theory;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns the problem of constructing C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} (continuously differentiable) controllers to stabilize a class of uncertain non-linear systems whose linearization around the origin may contain uncontrollable modes. Based on a new definition of homogeneity with monotone degrees, a polynomial Lyapunov function and a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} global stabilizer are constructed recursively. Moreover, several special cases are investigated to show the advantages of the proposed approaches using the generalized homogeneity compared to the existing approaches using the traditional homogeneity.
引用
收藏
页码:739 / 752
页数:13
相关论文
共 50 条