Formation of complexes obtained by the adsorption of a cationic polymer, poly(N-ethyl-4-vinylpyridium bromide), with a degree of polymerization of 600 on the surface of 50-nm bilayer vesicles (liposomes) formed from neutral phosphatidyl choline, anionic diphosphatidyl glycerol (cardiolipin), and a surfactant with one alkyl radical, such as electroneutral n-hexadecylphosphocholine, palmitic acid, or heptanoic acid, is studied. The incorporation of these surfactants into the liposomal membrane stimulates the appearance of oxidized forms of lipids in it. The incorporation of n-hexadecylphosphocholine into the membrane of n-hexadecylphosphocholine and palmitic acid with the alkyl radical, whose length is comparable with the length of alkyl radicals in a lipid molecule, has no effect on the permeability of the membrane. However, these liposomes lose integrity upon the adsorption of polycation; as a result, complexation becomes irreversible. Electroneutral and anionic surfactants with long hydrocarbon chains may accumulate in a cellular membrane owing to the oxidative degradation of unsaturated radicals in lipid molecules. This finding may be used in the design of polymeric therapeutic means specifically interacting with damaged cells.