We investigate squark and gluino pair production at LHC (CMS) with subsequent decays into quarks, leptons, and the lightest supersymmetric particles (LSP) in models with effective supersymmetry, where the third generation of squarks is relatively light, whilst the first two generations of squarks are heavy. We consider the general case of nonuniversal gaugino masses. The visibility of a signal through an excess over Standard Model background in (n≥2) jets+(m≥0) leptons+ETmiss events depends rather strongly on the relation between the LSP, second-neutralino, gluino, and squark masses and decreases with increasing LSP mass. We find that, for a relatively heavy gluino, it is very difficult to detect a SUSY signal even for light third-generation squarks \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$(m_{\tilde q_3 } \leqslant 1TeV)$$
\end{document} if the LSP mass is close to the third-generation squark mass.