Strichartz estimates for Maxwell equations in media: the structured case in two dimensions

被引:0
作者
Robert Schippa
Roland Schnaubelt
机构
[1] Karlsruhe Institute of Technology,Department of Mathematics
[2] Korea Institute for Advanced Study,School of Mathematics
来源
Archiv der Mathematik | 2023年 / 121卷
关键词
Maxwell system; Strichartz estimates; Lipschitz coefficients; 35Q61; 35B65; 42B37;
D O I
暂无
中图分类号
学科分类号
摘要
We prove Strichartz estimates for the two dimensional Maxwell equations with diagonal Lipschitz permittivity of special structure. The estimates have no loss in regularity that occurs in general for C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}-coefficients. In the charge-free case, we recover Strichartz estimates local-in-time for Euclidean wave equations in two dimensions up to endpoints.
引用
收藏
页码:425 / 436
页数:11
相关论文
共 12 条
  • [1] Dumas E(2012)Cauchy problem and quasi-stationary limit for the Maxwell–Landau–Lifschitz and Maxwell–Bloch equations Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 503-543
  • [2] Sueur F(1991)Decay estimates for the solutions of the system of crystal optics Asymptot. Anal. 4 61-95
  • [3] Liess O(2022)Time-harmonic solutions for Maxwell’s equations in anisotropic media and Bochner–Riesz estimates with negative index for non-elliptic surfaces Ann. Henri Poincaré 23 1831-1882
  • [4] Mandel R(2022)On quasilinear Maxwell equations in two dimensions Pure Appl. Anal. 4 313-365
  • [5] Schippa R(2002)Sharp counterexamples for Strichartz estimates for low regularity metrics Math. Res. Lett. 9 199-204
  • [6] Schippa R(2000)Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation Amer. J. Math. 122 349-376
  • [7] Schnaubelt R(2001)Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. II Amer. J. Math. 123 385-423
  • [8] Smith HF(2002)Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III J. Amer. Math. Soc. 15 419-442
  • [9] Tataru D(undefined)undefined undefined undefined undefined-undefined
  • [10] Tataru D(undefined)undefined undefined undefined undefined-undefined