Denote by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
{\user1{\mathcal{T}}}{\left( {{\user2{n}}{\user2{, m}}} \right)}
$$\end{document} the class of all triangle-free
graphs on n vertices and
m edges. Our main result is
the following sharp threshold, which answers the question for
which densities a typical triangle-free graph is bipartite. Fix
ε > 0 and let
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
t_{3} = t_{3} {\left( n \right)}\frac{{{\sqrt 3 }}}
{4}n^{{3/2}} {\sqrt {\log {\kern 1pt} {\kern 1pt} n} }
$$\end{document}. If
n/2 ≤ m ≤ (1 − ε) t3, then almost
all graphs in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
{\user1{\mathcal{T}}}{\left( {{\user2{n}}{\user2{, m}}} \right)}
$$\end{document} are not bipartite, whereas if
m ≥ (1 + ε)t3, then almost
all of them are bipartite. For m ≥ (1 + ε)t3, this allows
us to determine asymptotically the number of graphs in
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
{\user1{\mathcal{T}}}{\left( {{\user2{n}}{\user2{, m}}} \right)}
$$\end{document}. We also obtain corresponding
results for Cℓ-free graphs, for any
cycle Cℓ of fixed odd length.