For Which Densities are Random Triangle-Free Graphs Almost Surely Bipartite?

被引:0
作者
Deryk Osthus*
Hans Jürgen Prömel
Anusch Taraz
机构
[1] Humboldt-Universität zu Berlin,Institut für Informatik
[2] Humboldt-Universität zu Berlin,Institut für Informatik
[3] Humboldt-Universität zu Berlin,Institut für Informatik
来源
Combinatorica | 2003年 / 23卷
关键词
05C80; 05C35; 05A16;
D O I
暂无
中图分类号
学科分类号
摘要
Denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{T}}}{\left( {{\user2{n}}{\user2{, m}}} \right)} $$\end{document} the class of all triangle-free graphs on n vertices and m edges. Our main result is the following sharp threshold, which answers the question for which densities a typical triangle-free graph is bipartite. Fix ε > 0 and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ t_{3} = t_{3} {\left( n \right)}\frac{{{\sqrt 3 }}} {4}n^{{3/2}} {\sqrt {\log {\kern 1pt} {\kern 1pt} n} } $$\end{document}. If n/2 ≤ m ≤ (1 − ε) t3, then almost all graphs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{T}}}{\left( {{\user2{n}}{\user2{, m}}} \right)} $$\end{document} are not bipartite, whereas if m ≥ (1 + ε)t3, then almost all of them are bipartite. For m ≥ (1 + ε)t3, this allows us to determine asymptotically the number of graphs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\user1{\mathcal{T}}}{\left( {{\user2{n}}{\user2{, m}}} \right)} $$\end{document}. We also obtain corresponding results for Cℓ-free graphs, for any cycle Cℓ of fixed odd length.
引用
收藏
页码:105 / 150
页数:45
相关论文
empty
未找到相关数据