An introduction to 2-fuzzy n-normed linear spaces and a new perspective to the Mazur-Ulam problem

被引:0
作者
Choonkil Park
Cihangir Alaca
机构
[1] Hanyang University,Department of Mathematics, Research Institute for Natural Sciences
[2] Celal Bayar University,Department of Mathematics, Faculty of Science and Arts
来源
Journal of Inequalities and Applications | / 2012卷
关键词
Mazur-Ulam theorem; -; -norm; 2-fuzzy ; -normed linear spaces; -isometry; -Lipschitz mapping.;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this article is to introduce the concept of 2-fuzzy n-normed linear space or fuzzy n-normed linear space of the set of all fuzzy sets of a non-empty set. We define the concepts of n-isometry, n-collinearity n-Lipschitz mapping in this space. Also, we generalize the Mazur-Ulam theorem, that is, when X is a 2-fuzzy n-normed linear space or ℑ(X) is a fuzzy n-normed linear space, the Mazur-Ulam theorem holds. Moreover, it is shown that each n-isometry in 2-fuzzy n-normed linear spaces is affine.
引用
收藏
相关论文
共 52 条
[1]  
Gähler S(1964)Lineare 2-normierte raume Math Nachr 28 1-43
[2]  
Gähler S(1969)Untersuchungen I Math Nachr 40 165-189
[3]  
Misiak A(1989) ber verallgemeinerte Math Nachr 140 299-319
[4]  
Kim SS(1996)-metrische räume Demonstratio Math 29 739-744
[5]  
Cho YJ(1997)-inner product spaces Mat Bilten 21 81-102
[6]  
Malčeski R(2001)Strict convexity in linear Intern J Math Math Sci 27 631-639
[7]  
Gunawan H(1994)-normed spaces Bull Calcutta Math Soc 86 429-436
[8]  
Mashadi M(2003)Strong J Fuzzy Math 11 687-705
[9]  
Cheng SC(2005)-convex Intern J Math Math Sci 24 3963-3977
[10]  
Mordeson JN(2009)-normed spaces Bull Malays Math Sci Soc 32 211-221