Tripartite interactions between two phase qubits and a resonant cavity

被引:33
作者
Altomare, F. [1 ]
Park, J. I. [1 ]
Cicak, K. [1 ]
Sillanpaa, M. A. [1 ]
Allman, M. S. [1 ,2 ]
Li, D. [1 ]
Sirois, A. [1 ,2 ]
Strong, J. A. [1 ,2 ]
Whittaker, J. D. [1 ,2 ]
Simmonds, R. W. [1 ]
机构
[1] Natl Inst Stand & Technol, Boulder, CO 80305 USA
[2] Univ Colorado, Boulder, CO 80309 USA
基金
芬兰科学院; 欧洲研究理事会;
关键词
3-PARTICLE ENTANGLEMENT; SUPERCONDUCTING QUBITS; PHASE QUBITS; QUANTUM; STATE; TELEPORTATION; OPERATIONS;
D O I
10.1038/NPHYS1731
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Multipartite entanglement is essential for quantum computation(1) and communication(2-4), and for fundamental tests of quantum mechanics(5) and precision measurements(6). It has been achieved with various forms of quantum bits (qubits), such as trapped ions(7,8), photons(9) and atoms passing through microwave cavities(10). Quantum systems based on superconducting circuits, which are potentially more scalable, have been used to control pair-wise interactions of qubits(11-16) and spectroscopic evidence for three-particle entanglement was observed(17,18). Here, we report the demonstration of coherent interactions in the time domain for three directly coupled superconducting quantum systems, two phase qubits and one resonant cavity. We provide evidence for the deterministic evolution from a simple product state, through a tripartite W state, into a (bipartite) Bell state. The cavity can be thought of as a multiphoton register or an entanglement bus, and arbitrary preparation of multiphoton states in this cavity using one of the qubits(19) and subsequent interactions for entanglement distribution should allow for the deterministic creation of another class of entanglement, a Greenberger-Horne-Zeilinger state.
引用
收藏
页码:777 / 781
页数:5
相关论文
共 33 条
[1]   Quantum-information processing with circuit quantum electrodynamics [J].
Blais, Alexandre ;
Gambetta, Jay ;
Wallraff, A. ;
Schuster, D. I. ;
Girvin, S. M. ;
Devoret, M. H. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW A, 2007, 75 (03)
[2]   Wrapped branes as qubits [J].
Borsten, L. ;
Dahanayake, D. ;
Duff, M. J. ;
Ebrahim, H. ;
Rubens, W. .
PHYSICAL REVIEW LETTERS, 2008, 100 (25)
[3]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[4]   Observation of quantum oscillations between a Josephson phase qubit and a microscopic resonator using fast readout [J].
Cooper, KB ;
Steffen, M ;
McDermott, R ;
Simmonds, RW ;
Oh, S ;
Hite, DA ;
Pappas, DP ;
Martinis, JM .
PHYSICAL REVIEW LETTERS, 2004, 93 (18) :180401-1
[5]   Demonstration of two-qubit algorithms with a superconducting quantum processor [J].
DiCarlo, L. ;
Chow, J. M. ;
Gambetta, J. M. ;
Bishop, Lev S. ;
Johnson, B. R. ;
Schuster, D. I. ;
Majer, J. ;
Blais, A. ;
Frunzio, L. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
NATURE, 2009, 460 (7252) :240-244
[6]  
DICARLO L, 2010, PREPARATION MEASUREM
[7]   Three qubits can be entangled in two inequivalent ways [J].
Dur, W. ;
Vidal, G. ;
Cirac, J.I. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06) :062314-062311
[8]   Dressed Collective Qubit States and the Tavis-Cummings Model in Circuit QED [J].
Fink, J. M. ;
Bianchetti, R. ;
Baur, M. ;
Goeppl, M. ;
Steffen, L. ;
Filipp, S. ;
Leek, P. J. ;
Blais, A. ;
Wallraff, A. .
PHYSICAL REVIEW LETTERS, 2009, 103 (08)
[9]   Maximally entangling tripartite protocols for Josephson phase qubits [J].
Galiautdinov, Andrei ;
Martinis, John M. .
PHYSICAL REVIEW A, 2008, 78 (01)
[10]   Quantum-enhanced measurements: Beating the standard quantum limit [J].
Giovannetti, V ;
Lloyd, S ;
Maccone, L .
SCIENCE, 2004, 306 (5700) :1330-1336