Imaging one-dimensional and two-dimensional planar photodiode detectors fabricated by ion milling molecular beam epitaxy CdHgTe

被引:0
作者
R. Haakenaasen
H. Steen
E. Selvig
T. Lorentzen
A. D. Van Rheenen
L. Trosdahl-Iversen
H. Syversen
D. Hall
N. Gordon
机构
[1] Norwegian Defense Research Establishment,
[2] QinetiQ,undefined
[3] St. Andrews Road,undefined
来源
Journal of Electronic Materials | 2005年 / 34卷
关键词
CdHgTe; HgCdTe; CdZnTe; long-wavelength infrared (LWIR); mid-wavelength infrared (MWIR); ion milling; molecular beam epitaxy; n-on-p diodes; photodiodes; planar diodes; linear array; two-dimensional (2-D) array; IR detector;
D O I
暂无
中图分类号
学科分类号
摘要
Imaging one-dimensional (1-D) and two-dimensional (2-D) arrays of mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) planar photodiodes were fabricated by ion milling of vacancy-doped molecular beam epitaxy CdxHg1−xTe layers. Sixty-four-element 1-D arrays of 26×26 µm2 or 26×56 µm2 diodes were processed. Zero-bias resistance-area values (R0A) at 77 K of 4×106 Θcm2 at cutoff wavelength λCO=4.5 µm were measured, as well as high quantum efficiencies. To avoid creating a leakage current during ball bonding to the 1-D array diodes, a ZnS layer was deposited on top of the CdTe passivation layer, as well as extra electroplated Au on the bonding pads. The best measured noise equivalent temperature difference (NETD) on a LWIR array was 8 mK, with a median of 14 mK for the 42 operable diodes. The best measured NETD on a MWIR array was 18 mK. Two-D arrays showed reasonably good uniformity of R0A and zero-bias current (I0) values. The first 64×64 element 2-D array of 16×16 µm2 MWIR diodes has been hybridized to read-out electronics and gave median NETD of 60 mK.
引用
收藏
页码:922 / 927
页数:5
相关论文
共 57 条
  • [1] Mynbaev K.D.(2003)undefined Semiconductors 37 1127-1127
  • [2] Ivanov-Omskii V.I.(1987)undefined Electron. Lett. 23 978-978
  • [3] Blackman M.V.(1993)undefined Semicond. Sci. Technol. 8 1695-1695
  • [4] Charlton D.E.(2000)undefined J. Electron. Mater. 29 849-849
  • [5] Jenner M.D.(2002)undefined J. Appl. Phys. 91 427-427
  • [6] Purdy D.R.(2004)undefined J. Alloy Compounds 371 153-153
  • [7] Wotherspoon J.T.M.(2002)undefined J. Electron. Mater. 31 738-738
  • [8] Belas E.(2002)undefined J. Electron. Mater. 31 710-710
  • [9] Höschl P.(1996)undefined Semicond. Sci. Technol. 11 1116-1116
  • [10] Grill R.(2003)undefined J. Electron. Mater. 32 627-627