A Modification of the Parameterization Method for a Linear Boundary Value Problem for a Fredholm Integro-Differential Equation

被引:0
作者
D. S. Dzhumabaev
K. Zh. Nazarova
R. E. Uteshova
机构
[1] Institute of Mathematics and Mathematical Modeling,
[2] International Information Technology University,undefined
[3] Akhmet Yassawi University,undefined
来源
Lobachevskii Journal of Mathematics | 2020年 / 41卷
关键词
Fredholm integro-differential equation; modification of the parameterization method; boundary value problem; regular pair;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1791 / 1800
页数:9
相关论文
共 20 条
[1]  
Bressan A.(2014)A semigroup approach to an integro-differential equation modeling slow erosion J. Differ. Equat. 257 2360-2403
[2]  
Shen W.(2006)Solution of a partial integro-differential equation arising from viscoelasticity Int. J. Comput. Math. 83 123-129
[3]  
Dehghan M.(2010)Solution of parabolic integro-differential equations arising in heat conduction in materials with memory via He’s variational iteration technique Int. J. Numer. Methods Biomed. Eng. 26 705-715
[4]  
Dehghan M.(2013)Fixed point techniques and Schauder bases to approximate the solution of the first order nonlinear mixed Fredholm–Volterra integro-differential equation J. Comput. Appl. Math. 252 52-61
[5]  
Shakeri F.(2017)A semi-analytical approach to solve integro-differential equations J. Comput. Appl. Math. 317 17-30
[6]  
Berenguer M. I.(2016)A collocation method based on Bernstein polynomials to solve nonlinear Fredholm-Volterra integro-differential equations Appl. Math. Comput. 273 142-154
[7]  
Gamez D.(2019)On the solvability of a boundary value problem for the ordinary Fredholm integrodifferential equation with a degenerate kernel Comput. Math. Math. Phys. 59 241-252
[8]  
Lopez Linares A. J.(2016)“On inverse boundary value problem for a Fredholm integro-differential equation with degenerate kernel and spectral parameter,” Lobachevskii J. Math. J. Comput. Appl. Math. 294 342-357
[9]  
Kheybari S.(2017) (2), 230–239 (2019). equations Lobachevskii J. Math. 38 547-553
[10]  
Darvishi M. T.(2010)Determination of the coefficient and boundary regime in boundary value problem for integro-differential equation with degenerate kernel Comput. Math. Math. Phys. 50 1150-1161