Hearts and towers in stable ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document}-categories

被引:0
作者
Domenico Fiorenza
Fosco Loregian
Giovanni Luca Marchetti
机构
[1] Università degli Studi di Roma “la Sapienza”,Dipartimento di Matematica “Guido Castelnuovo”
[2] Max Planck Institute for Mathematics,School of Mathematics and Statistics
[3] University of Sheffield,undefined
关键词
Stable ; -categories; Triangulated categories; -structures; Tilting theory; Semiorthogonal decompositions; Stability conditions on triangulated categories;
D O I
10.1007/s40062-019-00237-0
中图分类号
学科分类号
摘要
We exploit the equivalence between t-structures and normal torsion theories on a stable ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document}-category to show how a few classical topics in the theory of triangulated categories, i.e., the characterization of bounded t-structures in terms of their hearts, their associated cohomology functors, semiorthogonal decompositions, and the theory of tiltings, as well as the more recent notion of Bridgeland’s slicings, are all particular instances of a single construction, namely, the tower of a morphism associated with a J-slicing of a stable ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document}-category [inline-graphic not available: see fulltext], where J is a totally ordered set equipped with a monotone Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}$$\end{document}-action.
引用
收藏
页码:993 / 1042
页数:49
相关论文
共 16 条
[1]  
Beligiannis A(2007)Homological and homotopical aspects of torsion theories Mem. Am. Math. Soc. 188 viii+207-345
[2]  
Reiten I(2007)Stability conditions on triangulated categories Ann. Math. (2) 166 317-329
[3]  
Bridgeland T(1985)Reflective subcategories, localizations and factorization systems J. Austral. Math. Soc. Ser. A 38 287-208
[4]  
Cassidy C(2016)t-structures are normal torsion theories Appl. Categ. Struct. 24 181-150
[5]  
Hébert M(2004)-stabilities and Izv. R. Akad. Nauk Ser. Mat. 68 117-876
[6]  
Kelly GM(2011)-structures on triangulated categories Compos. Math. 147 852-241
[7]  
Fiorenza D(2007)Base change for semiorthogonal decompositions Invent. Math. 170 231-245
[8]  
Loregiàn F(1997)Triangulated categories without models J. Algebra 197 231-undefined
[9]  
Gorodentsev AL(undefined)Stability for an abelian category undefined undefined undefined-undefined
[10]  
Kuleshov SA(undefined)undefined undefined undefined undefined-undefined